1. Ex. 2: Identification and Separation of Cellular Biomolecules.
a. Organic compounds: Energy/Calorie (kilocalorie); macromolecules:
b. Amino acids/Proteins, peptide bonds, Ninhydrin, Rf values; condensation/hydrolysis; paper chromatography (acetone/acetic acid).
c. Carbohydrates - boil in Benedict's reagent (red Cu+ precipitate - reducing sugars); Polysaccharides - brown/purple with lodine (KI).
d. Lipids - water insoluble; $\rightarrow$ Sudan IV, red droplets.
2. Ex. 2b, 3: Gel Filtration; Diffusion and Osmosis
a. Mobile, immobile phase; G-25 Sephadex beads; Hypothesis; Benedict's reagent, Lugol's lodine; Eluant Volume; relative rates of large vs. small molecule passage thru column.; $0.9 \% \mathrm{NaCl}$
b. Concentration gradient, simple diffusion; Facilitated diffusion - transporter proteins; Active Transport; Osmosis - Osmotic pressure; isotonic, hypertonic, hypotonic; Elodea plasmolysis, swelling? With range of Sucrose concentrations: $0.2 \mathrm{M}, 0.4 \mathrm{M}, 0.6 \mathrm{M}$; Osmotic Lysis -Blood cells/hemolysis with 0.3 M glucose, fructose, glycerol, urea, $\mathrm{CaCl}_{2}$ or $\mathrm{NaHCO}_{3}$ ?
c. Chloride - precept. with $\mathrm{AgNO}_{3}$; Protein - Biuret turns pinkish-violet; Plasmolysis, Hemolysis (RBC's)
3. Ex. 4: Protein concentration and Standard Curve.
a. BSA, Standard Curve, Spectrophotometer; Visible light; Reflected vs. Absorbed light wavelengths (color wheel); Bradford (Coomassie Brilliant Blue) Dye Reagent; A A $_{595}$
4. Ex. 5, 6: Enzyme Activity - Mushroom Tyrosinase
a. Enzyme, substrate, active site; Tyrosine $\rightarrow$ DOPA $\rightarrow$ Dopaquinone $\rightarrow$ DOPAchrome $\rightarrow \rightarrow$ Melanin.
b. Mushroom caps, sodium phosphate buffer - pH 4.0, pH 6.0, pH 8.0. A475.
c. Other factors affecting enzyme activity: Concentration of products, concentration of substrates/ reactants, temperature, $(\mathrm{pH})$, salt concentrations, pressure, biological activators/inhibitors.
d. Native PAGE - polyacrylamide, isoelectric point, loading/sample buffer (bromophenol blue, glycerol, Tris buffer pH 8.6), electrophoresis buffer (Tris buffer \& Glycine, pH 8.3 ), denaturing, native. Substrate (DOPA) concentration, pH and detection conditions.
5. Ex. 9, 10: DNA EXTRACTION \& RESTRICTION DIGEST OF Suspected Romanov DNA - Anastasia???:

* Detergents (SDS), Tris buffer (pH 8.0), EDTA, cold ethanol, ice, potassium acetate, aceto-orcein stain. A260, A280, A260/A280 ratio. 1.0 A260 $=50 \mu \mathrm{~g} / \mathrm{ml}$ DNA. Quartz cuvettes. Filtrate, retentate.
* Restriction endonucleases cut DNA at specific, palindromic sites (read 5' $\rightarrow 3^{\prime} ; 3^{\prime} \rightarrow 5^{\prime}$ ) - eg: "DNA Land; Evil Olive; Racecar; Yo Banana Boy!"; GAATTC/CTTAAG (for EcoR-I enzyme) - cuts between G and A in each strand; We used HinD-III $\rightarrow$ recognizes AAGCTT//TTCGAA, cutting between each pair of A's. These are our "Molecular Scissors" in DNA analysis and Recombinant DNA Technology." $37^{\circ} \mathrm{C}$ Incubation.
- Agarose Gel electrophoresis; Ethidium Bromide stain. Rf migration (= ration of band migration/bromophenol blue dye front migration $=\mathrm{R}_{\text {band }} / \mathrm{R}_{\text {dye front }}$ ) values. Bromophenol Blue, Xylene Cyanol tracking dyes; TAE (Tris-Acetate EDTA) electrophoresis buffer, pH~8.

6. Ex. 11: D1S80 PCR Amplification: Molecular markers, VNTRs, Marion = 18 and 24 repeat alleles. Polymorphism. Calculate Rf and number of repeats $\rightarrow$ genotype from each of your parents.
$>$ Are you a clone? Be able to support your answer!!! What were your fragment sizes, repeat numbers, and final D1S80 genotypes? $\qquad$ What are the Alien fragment/allele sizes??

- Primer Mix; Master Mix.
- PCR cycles $=95^{\circ} \mathrm{C}$ melt template, $\sim 60^{\circ} \mathrm{C}$ anneal primers, $72^{\circ} \mathrm{C}$ elongate with Taq DNA polymerase
- $\underline{\boldsymbol{n}}$ number of cycles, $\underline{2}^{n}=$ number of copies of a single DNA template after $n$ cycles of PCR.
- DNA Acrylamide electrophoresis - fine separation of only a few hundred bp fragments; BPB tracking dye, Ethidium Bromide stain. TBE (Tris Borate EDTA) buffer.


## BIOL 230 LAB (CUMULATIVE REVIEW) - Important Concepts

7. Ex. 12: TRANSFORMATION \& OPERON Induction: Plasmids = self-replicating "mini-chromosomes"; Recombinant pGLO plasmid has Jellyfish GFP ("reporter gene") under control of Arabinose Operon Promoter ( $\mathrm{P}_{\mathrm{BAD}}$ ). Our E. coli bacterial cells keep the plasmid, because we grow them in the presence of Ampicillin - and ampicillin resistance is encoded on pGLO - so they will die without it (selectable marker on the plasmid).

- AraC Activator / Inhibitor Protein binds near the $\mathbf{P}_{B A D}$ promoter, enhancing transcription of the promoter only when Arabinose, the substrate of the structural genes, is present (and glucose is absent!!). AraC can distinguish between the stereoisomers/ enantiomers, D-arabinose and L-arabinose. $\mathrm{CaCl}_{2}$ (neutralizes DNA and bacterial cell wall and plasma membrane) and heat-shock at $42^{\circ} \mathrm{C}$ loosen the cell wall and cell membrane to facilitate (make cells "competent") for transformation by the pGLO plasmid (amp ${ }^{R}$ gene \& ara operon promoter connected to GFP).
- Transformed bacteria were selected on nutrient agar plates with Ampicillin and D or $L$ arabinose, and with or without the presence of glucose. UV light (or Black light = long wavelength violet) was used to visualize colonies expressing Green Fluorescent Protein (produced when $\mathrm{P}_{B A D}$ is activated by the proper Arabinose enantiomer.).

8. Ex. 14, 15: MITOSIS, MEIOSIS, and FERTILIZATION:

- Chromosomes, sister chromatids, crossing over, centromeres, kinetochores, microtubule spindle fibers, asters, centrioles/centrosomes,
- Mitosis: Prophase, (prometaphase), Metaphase, Anaphase, Telophase; Interphase.
- Meiosis: Interphase, Pro-I, Meta-I, Ana-I, Telo-I (Interkinesis); Pro-II, Meta-II, Ana-II, Telo-II.
- Recognize all stages of mitosis!!
- Monohybrid cross: $3: 1$ phenotypic ratio (1:2:1, AA:Aa:aa, genotypic ratio)
- Dihybrid Cross: 9:3:3:1 phenotypic ratio; but still 3:1 ratio for each gene!!
- Homozygote, Heterozygote, Allele, Gene, Trait, Genotype, Phenotype, Dominant, Recessive.
- Diploid, haploid, Trisomy, Monosomy, LOCUS, independent assortment, segregation of alleles.


## GENERAL:

- Skills: (Micro)Pipetting, weighing, measuring, calculating migrations (Rf), PCR, electrophoresis - Extracting macromolecules - DNA, Protein
- Comparing Chromatography/separation techniques: paper, column (Gel Filtration; affinity/exchange/HIC); fluid phase, solid phase, electrophoresis (polyacrylamide gel, Agarose gel).
- Know your D1 S80 Genotype!!!! Do the calculations, if you have not already!!! ©
> Question Types: fill-in/terminology; multiple-choice; problem solving, graphs, and data analysis; lab procedures (manual/hands-on activity!).

