

A. Mendel's Monohybrid Experiments

- When the F₁ offspring were self-pollinated, F₂ generation showed a <u>3:1</u> phenotypic ratio.
- the recessive phenotype was present in 1/4 of the offspring.
 - Reappearance of the recessive phenotype refuted the blending hypothesis!!

Zygosity

- Because some alleles are dominant and some are recessive, the same phenotype can result from different genotypes.
- <u>Homozygous genotypes</u> have two copies of the same allele (AA or aa);
- 2. <u>Heterozygous genotypes</u> have two different alleles (Aa).
 - Heterozygous genotypes yield phenotypes showing the dominant trait.
 - AA or Aa show dominant phen.; only aa shows recessive (homozygous recessive)

Mendel's First Law of Inheritance

On the basis of many crosses using different characters, Mendel proposed his <u>First Law,</u> <u>The Law of Segregation:</u>

- 1) the units of inheritance (genes) are particulate,
- 2) there are two copies/versions (**alleles**) of each gene in every parent, &
- 3) during gamete formation (meiosis!) the two alleles for a character segregate from each other.
 - "Particulate Inheritance" NOT blending!!

12.3) Genetic Probabilities We can predict the results of hybrid crosses by using a <u>Punnett square</u> or by <u>calculating</u> <u>probabilities</u>. 1. <u>Product Rule:</u> To determine the joint probability of independent events, individual probabilities are multiplied. ("and", "also") 2. <u>Sum Rule:</u> To determine the probability of an event that can occur in two or more different

ways, they are are added. ("or", "either")

12.4) Human Pedigrees & Mendel's Laws of Inheritance

- Analysis of <u>pedigrees</u> reveals that humans exhibit Mendelian Inheritance.
 - Can't control human matings (legally ©), and
 - not many progeny
 - Must look at large family trees = Pedigrees!

B	Recessive Autosomal Inheritance			
	Generation I (parents)	One parent is heterozygous	Fig 12.10b	
	Generation II	1/ of normal offens	ing	
	Generation III	have allele.	ing	
	Generation IV	Heterozygous Cousins (Consanguineous mating).		
	Unaffected Affected	Heterozygote (unaffected phenotype)		
	Female 🔵 🔴			
	Male			
	Mating			
	Mating between relatives O= (consan	iguineous)		
	Rare Recessive Phenotype: 1. Parents of affected people may not be affected (skips generations) 2. 1/4 of the shildren of upaffected parents can be affected			
	2. The of the children of unanected parents can be anected			
	3. Phenotype occurs e	qually in both sexes		

Sex Linkage Pedigree <u>(X-Linkage)</u>	Figure 12.24		
Generation I (Parents) Carrier female (unaffected)			
Generation II			
Generation III			
Generation IV			
• Female who carries allele for phenotype of interest on one X chromosome			

•<u>Calico Cats</u>......

- -X-linked coloration gene
- -Affected by X-inactivation
 - Males have only one X, so either all <u>Orange (O)</u> or all <u>Black (o)</u>

Female Heterozygotes (Oo) = patches of black with patches of orange – depending upon which X (with O, or o) was

- depending upon which X (with <u>O</u>, or <u>O</u>) was inactivated in the embryonic precursor cells to each region of skin
 - » [White = determined by a different gene.]
- Therefore: <u>X-linkage</u>, <u>heterochromatin</u> transcriptional silencing, <u>embryonic X-inactivation</u>, "<u>codominance</u>", <u>& XX sex determination</u> all displayed by this 1 animal!

12.9) Non-Nuclear Inheritance Cytoplasmic organelles such as plastids and mitochondria contain Chloroplast mutation in parent plant: some heritable genes. only passed from seed/ovary plant. Pollen plant (o') Cytoplasmic Inheritance: White is generally by way of the egg (mother), Seed plant (9) - male gametes contribute only their nucleus (and a centriole) to the zygote. Your mitochondria are inherited only from your mother! "Eve" Hypothesis – re: human mitochondrial inheritance - Mitochondrial mutations primarily affect organs that require high energy: muscles, nerves, kidneys 12.25 Greg Lemond (champion bicyclist) -4-o'-Clock Plants muscle weakness, due to mitochondrial mutation, led to early retirement.

12.10) Genes & Chromosomes

- Each chromosome carries many genes.
- <u>Linked Genes</u> are located on the same chromosome, and are often inherited together. (= "Linkage Group")

Genes & Chromosomes: Linkage Maps! • The distance between genes on a chromosome is proportional to the frequency of crossing over. · Genetic maps are based on recombinant frequencies. y is chosen as an arbitrary reference point, 0. Yellow White Rudime body Chromosome Genetic map in nap units (cM) v and w = 0.010 $rac{1}{r}$ v and m = 0.030v and r = 0.269Recombinant w and v = 0.300 frequencies y and v = 0.322 w and m = 0.327 y and m = 0.355Figure 12.21 → Practice Figure 12.22

