

Summary of LAC Operon Regulation

TABLE 16.1						
Positive and Negative Regulation in the <i>lac</i> Operon ^a						
GLUCOSE	cAMP LEVELS	RNA POLYMERASE BINDING TO PROMOTER	LACTOSE	LAC REPRESSOR	TRANSCRIPTION OF lac GENES?	LACTOSE USED BY CELLS?
Present	Low	Absent	Absent	Active and bound to operator	No	No
Present	Low	Present, not efficient	Present	Inactive and not bound to operator	Low level	No
Absent	High	Present, very efficient	Present	Inactive and not bound to operator	High level	Yes
Absent	High	Absent	Absent	Active and bound to operator	No	No
Negative re	gulators a	re in red type.				
http://highered.mheducation.com/sites/0072995246/student_view0/chapter7/combination_of_switches_the_lac_operon.html						
https://www.sophia.org/tutorials/lac-and-trp-operons-gene-regulation?playlist=biology11						
LIFE 9e, Table 16.1 0 2011 Singuer Associates, Inc.						
hiter, //highavad mhadwastian aam/sitaa/002400220/studant waw0/shantav45/tha laa anavan himi						
http://life9e.sinauer.com/life9e/pages/16/162001.html						

<u>Chapter 11</u>: Chromosomes, the Cell Cycle, & Cell Division

- 1. Systems of Cell Reproduction
- 2. Interphase and the Control of Cell Division
- 3. Eukaryotic Chromosomes
- 4. <u>Mitosis: Distributing Exact Copies of</u> <u>Genetic Information</u>
- 5. Cytokinesis: The Division of the Cytoplasm
- 6. Reproduction: Sexual and Asexual
- 7. Meiosis: A Pair of Nuclear Divisions
- 8. Meiotic Errors
- 9. Cell Death

11.1) Systems of Cell Reproduction

• Cell division is necessary for *reproduction, growth, and repair* of an organism.

- Cell division must be initiated by a **reproductive signal**, consisting of three steps:
 - 1) replication of the genetic material (DNA)
 - 2) separation of the two DNA molecules in the cell
 - 3) division of the cytoplasm

Mitosis: Summary of Phases 1. PROPHASE: · the chromosomes condense into paired chromatids (Cohesin; Condensin); polar MTs form (from centrosomes = 2 centrioles). PROMETAPHASE: (late prophase) a) nuclear envelope disintegrates; b) MTs attach to kinetochores on each chromatid. 2. METAPHASE: chromosome centromeres align at equatorial plate. **3. ANAPHASE**: two daughter chromatids separate to spindle poles (MTs shorten, minus-enddirected motors/dynein). Separase. 4. TELOPHASE: spindle disintegrates; chomosomes de-condense; nuc env and nucleoli reform. **3-D!!:** http://www.hybridmedicalanimation.com/anim mitosis.html

Cytokinesis usually follows nuclear division.

- 1. Animal cell cytoplasm divides by plasma membrane furrowing ("<u>Cleavage Furrow</u>")
 - contraction of cytoplasmic microfilaments
 - Actin/Myosin = "Contractile Ring"!!

Cytokinesis Movie: http://bement.molbio.wisc.edu/node/13

- 2. Plant Cell cytokinesis by formation of a <u>Cell Plate</u>
 - vesicle fusion
 - synthesis of new cell wall material.

- The cell cycle can repeat itself many times, forming a clone of genetically identical cells.
- <u>Asexual</u> reproduction produces an organism genetically identical to the parent.
 - Any genetic variety is the result of mutations.
- In <u>Sexual</u> reproduction,
 - two haploid gametes (<u>n # chromosomes</u>)
 - (one from each parent)
 - unite in fertilization to form a genetically unique, diploid zygote (<u>2n # chromosomes</u>)

11.7) <u>Meiosis</u>: A Pair of Nuclear Divisions

- 1. Reduces the chromosome number from diploid to haploid (*Reduction Division*!)
- 2. Ensures that each haploid cell contains one member of each chromosome pair
 - Preparation for sexual reproduction/fertilization
 - (*n*-mom + *n*-dad \rightarrow 2*n*)
- 3. Consists of 2 nuclear divisions!

http://highered.mcgraw-hill.com/sites/0072437316/student_view0/chapter12/animations.html# → Stages, etc.

 Interpretation
 Anaphase I
 Telophase I

 Metaphase I
 Anaphase I
 Telophase I

 Image: I

- <u>Crossing over</u> during <u>Prophase I</u> (<u>IntRA</u>chrom'l recomb.)
 During Synapsis & formation of Chiasmata
- 2. <u>Random selection of which homolog</u> of a pair (from mom or from dad?) migrates to which pole during <u>Anaphase I</u> (IntERchromosomal recombination)
 - → genetic composition of each haploid gamete is different from that of the parent and sisters
 - The more chromosome pairs in a diploid cell, the greater the diversity of chrom. comb'ns generated by meiosis
 - (2ⁿ possibilities! n= # pairs).
- [#3.) & Sex/Fertilization: random combinations of 2 diverse gametes!!!! ... #4.) and choice of partners!?]

Review – Major Themes So Far!!

- 1. Molecular shape/<u>structure</u> → Molec./Biol. <u>Function</u>
 - Lipids, Polysacch., Proteins!...., RNA, DNA
- In Biological systems: <u>Endergonic</u> processes are COUPLED to <u>Exergonic</u> processes so that they will proceed efficiently.
 - ETC/ATP, Active transport, etc.
- Biological reactions in eukaryotes are <u>compartmentalized</u>.
 glyc, TCA, ETC, lysosome, RER, SER
- 4. Eukaryotic Gene regulation has MANY levels of complexity.
 - > Many steps for each phase of gene expression!
 - > Each one can be halted in several ways!!
- 5. Mitosis \rightarrow generate nuclei identical to each other & original
- 6. Meiosis → generate Haploid nuclei genetically different from each other or from either parent!