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CHAPTER 1 Factoring Polynomials and
Polynomial Equations

Chapter Outline
1.1 POLYNOMIAL EQUATIONS IN FACTORED FORM

1.2 FACTORING QUADRATIC EXPRESSIONS AND SOLVING QUADRATIC EQUATIONS

BY FACTORING

1.3 FACTORING SPECIAL PRODUCTS AND SOLVING QUADRATIC EQUATIONS BY

FACTORING

1.4 FACTORING POLYNOMIALS COMPLETELY AND SOLVING POLYNOMIAL EQUA-
TIONS BY FACTORING

1

http://www.ck12.org


1.1. Polynomial Equations in Factored Form www.ck12.org

1.1 Polynomial Equations in Factored Form

Learning Objectives

• Use the zero-product property
• Find greatest common monomial factor
• Solve simple polynomial equations by factoring

Introduction

Previously, we learned how to multiply polynomials. We did that by using the Distributive Property. All the terms in
one polynomial must be multiplied by all terms in the other polynomial. In this section, you will start learning how
to do this process in reverse. Similar to what you have done in the past with positive integers, the factors of 15 are 1,
3, 5, and 15 since:

1×15 = 15

3×5 = 15

The factors are the parts of multiplication problem. In this section you will be breaking down polynomials into the
multiplication parts or factors. This process is called factoring polynomials.

2

http://www.ck12.org


www.ck12.org Chapter 1. Factoring Polynomials and Polynomial Equations

Lets look at the areas of the rectangles again: Area = length · width. The total area of the figure on the right can be
found in two ways.

Method 1 Find the areas of all the small rectangles and add them

Blue rectangle = ab

Orange rectangle = ac

Red rectangle = ad

Green rectangle = ae

Pink rectangle = 2a

Total area = ab+ac+ad +ae+2a

Method 2 Find the area of the big rectangle all at once

Length = a

Width = b+ c+d + e+2

Area = a(b+ c+d + e+2)

Since the area of the rectangle is the same no matter what method you use then the answers are the same:

ab+ac+ad +ae+2a = a(b+ c+d + e+2)

Factoring out the greatest common factor (GCF) means that you take the factors that are common to all the terms
in a polynomial. Then, multiply them by a parenthesis containing all the terms that are left over when you divide
out the common factors.

Use the Zero-Product Property

Polynomials can be written in expanded form or in factored form. Expanded form means that you have sums and
differences of different terms:

3
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6x4 +7x3−26x2 +17x+30

Notice that the degree of the polynomials is four. It is written in standard form because the terms are written in order
of decreasing power.

Factored form means that the polynomial is written as a product of factors. The factors are also polynomials, usually
of lower degree.

6x4 +7x3−26x2 +17x+30 = (x−1)(x+2)(2x−3)(3x+5)

Factored form of a polynomial expression:

(x−1)︸    ︷︷    ︸
1st f actor

(x+2)︸    ︷︷    ︸
2nd f actor

(2x−3)︸     ︷︷     ︸
3rd f actor

(3x+5)︸     ︷︷     ︸
4th f actor

Notice that each factor in this polynomial is a binomial. Writing polynomials in factored form is very useful because
it helps us solve polynomial equations. Before we talk about how we can solve polynomial equations of degree 2 or
higher, lets review how to solve a linear equation (degree 1).

Example 1

Solve the following equations

a) x−4 = 0

b) 3x−5 = 0

Solution

Remember that to solve an equation you are trying to find the value of x:

a)

x −4 = 0

+4 =+4

x = 4

b)

3x −5 = 0

+5 =+5

3x = 5
3x
3

=
5
3

x =
5
3

Now we are ready to think about solving equations like

2x2 +5x = 42

Notice we can’t isolate x in any way that you have already learned. But, we can subtract 42 on both sides to get

4
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2x2 +5x−42 = 0

Now, the left hand side of this equation can be factored!

Factoring a polynomial allows us to break up the problem into easier chunks. For example,

2x2 +5x−42 = (x+6)(2x−7)

So now we want to solve:

(x+6)(2x−7) = 0

How would we solve this? If we multiply two numbers together and their product is zero, what can we say about
these numbers? The only way a product is zero is if one or both of the terms are zero. This property is called the
Zero-product Property and is the property used to solve factorable polynomials. In general, if

I f

a×b = 0

then

a = 0 OR b = 0

How does that help us solve the polynomial equation? Since the product equals 0, then either of the terms or factors
in the product must equal zero. We set each factor equal to zero and we solve. You will learn the factoring process
later in this chapter.

(x+6) = 0 OR (2x−7) = 0

We can now solve each part individually and we obtain:

x+6 = 0 or 2x−7 = 0

2x = 7

x =−6 or x =−7
2

Notice that the solution is x =−6 OR x = 7
2 . The OR says that either of these values of x would make the product

of the two factors equal to zero. Lets plug the solutions back into the equation and check that this is correct.

5
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Check x =−6

(x+6)(2x−7) =

(−6+6)(2(6)−7) =

(0)(5) = 0

Check x =
7
2

(x+6)(2x−7) =(
7
2
+6
)(

2 · 7
2
−7
)
=(

19
2

)
(7−7) =(

19
2

)
(0) = 0

We can also substitute the solutions back into the orignal equation 2x2 +5x = 42.

Check x =−6

2(−6)2 +5(−6) = 42 =

2(36)+(−30) = 42 =

72+(−30) = 42

42 = 42

Check x =
7
2

2
(

7
2

)2

+5
(

7
2

)
= 42

2
(

49
4

)
+5
(

7
2

)
= 42

49
2
+

35
2

= 42

84
2

= 42

42 = 42

Both solutions check out. You should notice that the product equals to zero because each solution makes one of the
factors simplify to zero.

If we are not able to factor a polynomial the problem becomes harder and we must use other methods that you will
learn later.

As a last note in this section, keep in mind that the Zero-product Property only works when a product equals zero.
For example, if you multiplied two numbers and the answer was nine you could not say that each of the numbers
was nine.

6
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(x+2)(x−3) = 9

x 6=−2 or x 6= 3

In order to use the property, you must have the factored polynomial equal to zero.

(x+2)(x−3) = 0

x =−2 or x = 3

Example 2

Solve each of the polynomials

a) (x−9)(3x+4) = 0

b) x(5x−4) = 0

c) 4x(x+6)(4x−9) = 0

Solution

Since all polynomials are in factored form, we set each factor equal to zero and solve the simpler equations separately

a) (x−9)(3x+4) = 0 can be split up into two linear equations

x−9 = 0 or 3x+4 = 0

3x =−4

x = 9 or x =−4
3

b) x(5x−4) = 0 can be split up into two linear equations

5x−4 = 0

x = 0 or 5x = 4

x =
4
5

c) 4x(x+6)(4x−9) = 0 can be split up into three linear equations.

4x = 0 4x−9 = 0

x =
0
4

or x+6 = 0 or 4x = 9

x = 0 x =−6 x =
9
4

Find Greatest Common Monomial Factor

Once we get a polynomial in factored form, it is easier to solve the polynomial equation. But first, we need to learn
how to factor. There are several factoring methods you will be learning in the next few sections. In most cases,

7
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factoring can take several steps to complete because we want to factor completely. That means that we factor until
we cannot factor anymore.

Lets start with the simplest case, finding the greatest common factor or GCF. When we want to factor, we always
look for common monomials first. Consider the following polynomial, written in expanded form.

ax+bx+ cx+dx

A common factor can be a number, a variable or a combination of numbers and variables that are contained in all
terms of the polynomial. We are looking for expressions that divide out evenly from each term in the polynomial.
Notice that in our example, the factor x appears in all terms. Therefore x is a common factor.

x · (a)+ x · (b)+ x · (c)+ x · (d)

Since x is a common factor, we factor it by writing to the left of a set of parenthesis:

x ( )

Inside the parenthesis, we write what is left over when we divide or factor out x from each term.

x(a+b+ c+d)

Lets look at more examples.

Example 3

Factor

a) 2x+8

b) 15x−25

c) 3a+9b+6

Solution

a) We see that the factor 2 divides evenly from both terms.

2x+8 = 2(x)+2(4)

We factor the 2 by writing it to the left of a parenthesis.

2( )

Inside the parenthesis, we write what is left from each term when we divide by 2 or factor out 2.

2(x+4) This is the factored form.

b) We see that the factor of 5 divides evenly from all terms.

Rewrite 15x−25 = 5(3x)−5(5).

Factor 5 to get 5(3x−5).

c) We see that the factor of 3 divides evenly from all terms.

Rewrite 3a+9b+6 = 3(a)+3(3b)+3(2)

8
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Factor 3 to get 3(a+3b+2).

Here are examples where different powers of the common factor appear in the polynomial.

Example 4

Find the greatest common factor

a) a3−3a2 +4a

b) 12a4−5a3 +7a2

Solution

a) a3−3a2 +4a

Notice that a appears in all terms of a3−3a2 +4a but each term has a different power of a. The common variable
factor is the lowest power of the variable that appears in each term of the expression. In this case the common factor
is a.

Lets rewrite a3−3a2 +4a = a(a2)+a(−3a)+a(4)

Factor a to get a(a2−3a+4).

b) 12a4−5a3 +7a2

The factor a appears in all the term and the lowest power is a2.

We rewrite the expression as 12a4−5a3 +7a2 = 12a2 ·a2−5a ·a2 +7 ·a2

Factor a2 to get a2(12a2−5a+7)

Lets look at some examples where there is more than one common factor.

Example 5:

Factor completely

a) 3ax+9a

b) x3y+ xy

c) 5x3y−15x2y2 +25xy3

Solution

a) Notice that 3 is common to both terms.

When we factor 3 we get 3(ax+3a)

This is not completely factored though because if you look inside the parenthesis, we notice that a is also a common
factor.

When we factor a we get 3 ·a(x+3), which is equivalent to 3a(x+3).

This is the final answer because there are no more common factors.

A different option is to factor all common factors at once.

Since both 3 and a are common we factor the term 3a and get 3a(x+3).

b) Notice that both x and y are common factors.

Lets rewrite the expression x3y+ xy = xy(x2)+ xy(1)

When we factor xy we obtain xy(x2 +1).

c) The common factors are 5xy.

When we factor 5xy we obtain 5xy(x2−3xy+5y2).

9
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Note: Always look for both the common number and variable factors for each term in the expression.

Solve Simple Polynomial Equations by Factoring

Now that we know the basics of factoring, we can solve some simple polynomial equations. We already saw how
we can use the Zero-product Property to solve polynomials in factored form. Here you will learn how to solve
polynomials in expanded form. These are the steps for this process.

Step 1

If necessary, re-write the equation in standard form such that:

Polynomial expression = 0.

Step 2

Factor the polynomial completely.

Step 3

Use the zero-product rule to set each factor equal to zero.

Step 4

Solve each equation from step 3.

Step 5

Check your answers by substituting your solutions into the original equation.

Example 6

Solve the following polynomial equations

a) x2−2x = 0

b) 2x2 = 5x

c) 9x2−6x = 0

Solution:

a) x2−2x = 0

Rewrite. This is not necessary since the equation is in the standard form.

Factor. The common factor is x, so this factors as: x(x−2) = 0.

Set each factor equal to zero.

x = 0 or x−2 = 0

Solve.

x = 0 or x = 2

Check Substitute each solution back into the original equation.

x = 0 ⇒ (0)2−2(0) = 0 check

x = 2 ⇒ (2)2−2(2) = 4−4 = 0 check

10
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Answer

x = 0 x = 2

b) 2x2 = 5x

Rewrite. 2x2 = 5x⇒ 2x2−5x = 0.

Factor. The common factor is x, so this factors as: x(2x−5) = 0.

Set each factor equal to zero..

x = 0 or 2x−5 = 0

Solve.

x = 0 or 2x = 5

x =
5
2

Check. Substitute each solution back into the original equation.

x = 0⇒ 2(0)2 = 5(0)⇒ 0 = 0 works out

x =
5
2
⇒ 2

(
5
2

)2

= 5 · 5
2
⇒ 2 · 25

4
=

25
2
⇒ 25

2
=

25
2

works out

Answer

x = 0 or x =
5
2

c) 9x2−6x = 0

Rewrite. This step is not necessary.

Factor. The common factor is 3x, so this factors as 3x(3x−2) = 0.

Set each factor equal to zero.

3x = 0 or 3x−2 = 0

Solve.

x = 0 or 3x = 2

x =
2
3

Check. Substitute each solution back into the original equation.

11
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x = 0⇒ 9(0)−6(0) = 0−0 = 0 checks

x =
2
3
⇒ 9 ·

(
2
3

)2

−6 · 2
3
= 9 · 4

9
−4 = 4−4 = 0 checks

Answer

x = 0 or x =
2
3

Review Questions

Factor the common factor in the following polynomials.

1. 3x3−21x
2. 5x6 +15x4

3. 4x3 +10x2−2x
4. −10x6 +12x5−4x4

5. 12xy+24xy2 +36xy3

6. 5a3−7a
7. 45y12 +30y10

8. 16xy2z+4x3y

Solve the following polynomial equations.

9. x(x+12) = 0

10. (2x+1)(2x−1) = 0

11. (x−5)(2x+7)(3x−4) = 0

12. 2x(x+9)(7x−20) = 0

13. 18y−3y2 = 0

14. 9x2 = 27x

15. 4a2 +a = 0

16. 3b2−5b = 0

Review Answers

1. 3x(x2−7)
2. 5x4(x2 +3)
3. 2x(2x2 +5x−1)
4. 2x4(−5x2 +6x−2)
5. 12xy(1+2y+3y2)
6. a(5a2−7)
7. 15y10(3y2 +2)
8. 4xy(4yz+ x2)
9. x = 0,x =−12

12
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10. x =−1
2 ,x =

1
2

11. x = 5,x =−7
2 ,x =

4
3

12. x = 0,x =−9,x = 20
7

13. y = 0,y = 6
14. x = 0,x = 3
15. a = 0,a =−1

4
16. b = 0,b = 5

3

13
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1.2 Factoring Quadratic Expressions and Solv-
ing Quadratic Equations by Factoring

Learning Objectives

• Write quadratic equations in standard form.
• Factor quadratic expressions.
• Factor quadratic expression when the leading coefficient is -1.
• Solve polynomial equations by factoring.

Write Quadratic Expressions in Standard Form

Quadratic polynomials are polynomials of degree 2. The standard form of a quadratic polynomial is written as

ax2 +bx+ c

Here a,b, and c stand for constant numbers. Factoring these polynomials depends on the values of these constants. In
this section, we will learn how to factor quadratic polynomials for different values of a,b, and c. In the last section,
we factored out common monomials, so you already know how to factor quadratic polynomials where c = 0.

For example for the quadratic ax2 + bx, the common factor is x and this expression is factored as x(ax+ b). When
all the coefficients are not zero these expressions are also called Quadratic Trinomials, since they are polynomials
with three terms.

Factor when a = 1, b is Positive, and c is Positive

Lets first consider the case where a= 1,b is positive and c is positive. The quadratic trinomials will take the following
form.

x2 +bx+ c

You know from multiplying binomials that when you multiply two factors (x+m)(x+ n) you obtain a quadratic
polynomial. Lets multiply this and see what happens. We use The Distributive Property.

(x+m)(x+n) = x2 +nx+mx+mn

Multiplying two binomials is sometime referred to as FOIL. The letters of the word FOIL can be used to help
remember the four products when multiplying to binomials.

F → First

O→ Outer

I→ Inner

L→ Last

14
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1. Find the product of the first terms of the two binomials.
2. Find the product of the outer terms of the two binomials.
3. Find the product of the inner terms of the two binomials.
4. Find the product fo the last terms of the two binomails.

Yet, another way to to multiply two binomials is to think of double distrubution. Distribute the first term of the first
binomials to the second binomial. The distribute the second term of the first binomial to the second binomial.

To simplify this polynomial we would combine the like terms in the middle by adding them.

(x+m)(x+n) = x2 +(n+m)x+mn

To factor we need to do this process in reverse.

We see that x2 +(n+m)x+mn

Is the same form as x2 +bx+ c

This means that we need to find two numbers m and n where

n+m = b and mn = c

To factor x2 +bx+ c, the answer is the product of two parentheses.

(x+m)(x+n)

so that n+m = b and mn = c

Lets try some specific examples.

Example 1

Factor x2 +5x+6

Solution We are looking for an answer that is a product of two binomials in parentheses.

(x+ )(x+ )

To fill in the blanks, we want two numbers m and n that multiply to 6 and add to 5. A good strategy is to list the
possible ways we can multiply two numbers to give us 6 and then see which of these pairs of numbers add to 5. The
number six can be written as the product using its factors.

6 = 1 ·6 and 1+6 = 7

6 = 2 ·3 and 2+3 = 5 ← This is the correct choice.

So the answer is (x+2)(x+3).

We can check to see if this is correct by multiplying (x+2)(x+3).

(x+2)(x+3) = x2 +3x+2x+6 = x2 +5x+6
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The answer checks out.

Example 2

Factor x2 +7x+12

Solution

We are looking for an answer that is a product of two parentheses (x+ )(x+ ).

The number 12 can be written as the product of the following numbers.

12 = 1 ·12 and 1+12 = 13

12 = 2 ·6 and 2+6 = 8

12 = 3 ·4 and 3+4 = 7 ← This is the correct choice.

The answer is (x+3)(x+4). When these factors are multiplied, the product is x2 +7x+12.

Example 3

Factor x2 +8x+12.

Solution

We are looking for the product of the two binomials in parentheses (x+ )(x+ ).

The number 12 can be written as the product of the following numbers.

12 = 1 ·12 and 1+12 = 13

12 = 2 ·6 and 2+6 = 8 ← This is the correct choice.

12 = 3 ·4 and 3+4 = 7

The answer is (x+2)(x+6). When these factors are multiplied, the product is x2 +8x+12.

Example 4

Factor x2 +12x+36.

Solution

We are looking for the product of the two binomials in parentheses (x+ )(x+ ).

The number 36 can be written as the product of the following numbers.

36 = 1 ·36 and 1+36 = 37

36 = 2 ·18 and 2+18 = 20

36 = 3 ·12 and 3+12 = 15

36 = 4 ·9 and 4+9 = 13

36 = 6 ·6 and 6+6 = 12 ← This is the correct choice

The answer is (x+6)(x+6). When these factors are multiplied, the product is x2 +12x+36.

Factor when a = 1, b is Negative and c is Positive

Now lets see how this method works if the middle coefficient (b) is negative.
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Example 5

Factor x2−6x+8.

Solution

We are looking for the product of the two binomials in parentheses (x+ )(x+ ).

The number 8 can be written as the product of the following numbers.

8 = (1) · (8) and 1+(8) = 9

8 = (−1) · (−8) and −1+(−8) =−9

8 = 2 ·4 and 2+4 = 6

8 = (−2) · (−4) and −2+(−4) =−6

8 = (−2) · (−4) and −2+(−4) =−6 ← This is the correct choice.

The factorization is (x+(−2))(x+(−4)) and this can be written as (x−2)(x−4).

The answer is (x−2)(x−4)

We can check to see if this is correct by multiplying (x−2)(x−4).

(x−2)(x−4) = x2−2x−4x+8 = x2−6x+8

The answer checks out.

Example 6

Factor x2−17x+16

Solution

We are looking for the product of two binomials in parentheses. We will use± to mean plus or minus. (x± )(x±
).

The number 16 can be written as the product of the following numbers:

16 = 1 ·16 and 1+16 = 17

16 = (−1) · (−16) and −1+(−16) =−17 ← This is the correct choice.

16 = 2 ·8 and 2+8 = 10

16 = (−2) · (−8) and −2+(−8) =−10

16 = 4 ·4 and 4+4 = 8

16 = (−4) · (−4) and −4+(−4) =−8

The answer is (x−1)(x−16). When these factors are multiplied, the product is xx2−17x+16.

Note: When the correct choice of factors are found, there is no need to continue the trial and error process to find
the factors of c that add to b.

17

http://www.ck12.org


1.2. Factoring Quadratic Expressions and Solving Quadratic Equations by Factoring www.ck12.org

Factor when a = 1 and c is Negative

Now lets see how this method works if the constant term is negative.

Example 7

Factor x2 +2x−15

Solution

We are looking for the product of two binomials in parentheses (x± )(x± ).

In this case, we must take the negative sign into account. The number -15 can be written as the product of the
following numbers.

−15 =−1 ·15 and −1+15 = 14 Notice that these are two different choices.

−15 = 1 · (−15) and 1+(−15) =−14 Notice that these are two different choices.

−15 =−3 ·5 and −3+5 = 2 ← This is the correct choice.

−15 = 3 · (−5) and 3+(−5) =−2

The answer is (x−3)(x+5).

We can check to see if this is correct by multiplying (x−3)(x+5).

(x−3)(x+5) = x2−3x+5x−15 = x2 +2x−15

The answer checks out.

Example 8

Factor x2−10x−24

Solution

We are looking for the product of two binomials in parentheses (x± )(x± ).

The number -24 can be written as the product of the following numbers.

−24 =−1 ·24 and −1+24 = 23

−24 = 1 · (−24) and 1+(−24) =−23

−24 =−2 ·12 and −2+12 = 10

−24 = 2 · (−12) and 2+(−12) =−10 ← This is the correct choice.

−24 =−3 ·8 and −3+8 = 5

−24 = 3 · (−8) and 3+(−8) =−5

−24 =−4 ·6 and −4+6 = 2

−24 = 4 · (−6) and 4+(−6) =−2
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The answer is (x−12)(x+2). We can verify this is the correct factorization by multiplying the binomials.

Example 9

Factor x2 +34x−35

Solution

We are looking for the product of two binomials in parentheses (x± )(x± ).

The number -35 can be written as the product of the following numbers:

−35 =−1 ·35 and −1+35 = 34 ← This is the correct choice.

−35 = 1 · (−35) and 1+(−35) =−34

−35 =−5 ·7 and −5+7 = 2

−35 = 5 · (−7) and 5+(−7) =−2

The answer is (x−1)(x+35).

Factor when a = - 1

When a =−1, the best strategy is to factor the common factor of -1 from all the terms in the quadratic polynomial.
Then, you can apply the methods you have learned so far in this section to find the missing factors.

Example 10

Factor −x2 + x+6.

Solution

First factor the common factor of -1 from each term in the trinomial. Factoring -1 changes the signs of each term in
the expression.

−x2 + x+6 =−(x2− x−6)

We are looking for the product of two binomials in parentheses (x± )(x± ).

Now our job is to factor x2− x−6.

The number -6 can be written as the product of the following numbers.

−6 =−1 ·6 and −1+6 = 5

−6 = 1 · (−6) and 1+(−6) =−5

−6 =−2 ·3 and −2+3 = 1

−6 = 2 · (−3) and 2+(−3) =−1 ← This is the correct choice.

The answer is −(x−3)(x+2).

Solve Quadratic Equations by Factoring

Now that we know the basics of factoring, we can solve some simple polynomial equations. We already saw how
we can use the Zero-product Property to solve polynomials in factored form. However, it is important to recognize
the different between an expression and an equation.
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This is a quadratic expression: ax2 +bx+ c

This is a quadratic equation: ax2 +bx+ c = 0

The degree of an equation determines the most number of solutions that the equation could have. Since we will be
solving quadratic equations, which are equations of degree 2, we can expect two solutions. However, one solution
can be a repeated solution. For example, (x+3)(x+3) = 0 has a solution of x =−3, but this is a repeated solution
because the quadratic equation has two factors of (x+3).

Now we will learn how to solve factorable quadratic equations in expanded form.

Steps to Solving Quadratic Equations in Factored Form

Step 1

If necessary, re-write the equation in standard form such that:

Polynomial expression = 0.

Step 2

Factor the quadratic completely.

Step 3

Use the zero-product rule to set each factor equal to zero.

Step 4

Solve each equation from step 3.

Step 5

Check your answers by substituting your solutions into the original equation.

Example 11

Solve the following polynomial equations

a) x2−2x−15 = 0

b) x2 = 5x+6

c) −x2 = 8−6x

Solution:

a) x2−2x−15 = 0

Rewrite. This is not necessary since the equation is in the correct form.

Factor (x−5)(x+3) = 0.

Set each factor equal to zero.

x−5 = 0 or x+3 = 0

Solve.

x = 5 or x =−3

Check. Substitute each solution back into the original equation.
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x = 5 ⇒ (5)2−2(5)−15 = 0 check

x =−3 ⇒ (−3)2−2(−3)−15 = 0 check

Answer x = 5,x =−3

b) x2 = 5x+6

Rewrite x2−5x−6 = 0.

Factor (x−6)(x+1) = 0.

Set each factor equal to zero.

x−6 = 0 or x+1 = 0

Solve

x = 6 or x =−1

Check Substitute each solution back into the original equation.

x = 6 ⇒ (6)2−5(6)−6 = 0 check

x =−1 ⇒ (−1)2−5(−1)−6 = 0 check

Answer x = 6,x =−1

c) −x2 = 8−6x

Rewrite −x2 +6x−8 = 0

Factor

−x2 +6x−8 = 0 ⇒ −1(x2−6x+8) = 0 ⇒ −1(x−4)(x−2) = 0

.

Set each factor equal to zero:.

x−4 = 0 or x−2 = 0

Solve

x = 4 or x = 2

Check Substitute each solution back into the original equation.

x = 4⇒−(4)2 +6(4)−8 = 0 works out

x = 2⇒−(2)2 +6(2)−8 = 0 works out
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Answer x = 4,x = 2

To Summarize,

A quadratic of the form x2 +bx+ c factors as a product of two parenthesis (x+m)(x+n).

• If b and c are positive then both m and n are positive

– Example: x2 +8x+12 factors as (x+6)(x+2).

• If b is negative and c is positive then both m and nare negative.

– Example: x2−6x+8 factors as (x−2)(x−4).

• If c is negative then either m is positive and nis negative or vice-versa

– Example: x2 +2x−15 factors as (x+5)(x−3).
– Example: x2 +34x−35 factors as (x+35)(x−1).

• If a =−1, factor a common factor of -1 from each term in the trinomial and then factor as usual. The answer
will have the form −(x+m)(x+n).

– Example: −x2 + x+6 factors as −(x−3)(x+2).

Concept Extension

Example 12

The solutions to a quadratic equation are x =−3 and x = 4. What was the original quadratic equation in standard
form with a leading coefficient of 1?

Solution:

If a solution is x =−3, then a factor of the quadratic equation was (x+3).

If a solution is x = 4, then a factor of the quadratic equation was (x−4).

As a result the original quadratic equatio with a leading coefficient of 1 would be:

(x−3)(x+4) = 0

Now multiply the left side and simplify.

(x−3)(x+4) = 0

x2−3x+4x−12 = 0

x2 + x−12 = 0

Example 13

The solutions to a quadratic equation are x = 3
4 and x = −1

3 . What was a possible original quadratic equation in
standard form?

Solution:

If a solution is x = 3
4 , then a factor of the quadratic equation was (4x−3).

If a solution is x =−1
3 , then a factor of the quadratic equation was (3x+1).

As a result the original quadratic equatio with a leading coefficient of 1 would be:
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(4x−3)(3+1) = 0

Now multiply the left side and simplify.

(4x−3)(3+1) = 0

12x2 +4x−9x−3 = 0

12x2−5x−3 = 0

Review Questions

Factor the following quadratic polynomials.

1. x2 +10x+9
2. x2 +15x+50
3. x2 +10x+21
4. x2 +16x+48
5. x2−11x+24
6. x2−13x+42
7. x2−14x+33
8. x2−9x+20
9. x2 +5x−14

10. x2 +6x−27
11. x2 +7x−78
12. x2 +4x−32
13. x2−12x−45
14. x2−5x−50
15. x2−3x−40
16. x2− x−56
17. −x2−2x−1
18. −x2−5x+24
19. −x2 +18x−72
20. −x2 +25x−150
21. x2 +21x+108
22. −x2 +11x−30
23. x2 +12x−64
24. x2−17x−60

Solve.

25. x2 +12x−28 = 0

26. x2−8x+12 = 0

27. x2−9x−36 = 0

28. −x2 = x−20

29. The polynomial x2−4x−21 has (x+3) as one of the factors. What is the other factor?

30. The polynomial x2−2x+1 has (x−1) as one of the factors. What is the other factor?
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31. The solutions to a quadratic equation are x = −2 and x = 4. What was the original equation in standard
form with a leading coefficient of 1?

32. The solutions to a quadratic equation are x = 2
3 and x = 1

2 . What was a possible original equation in standard
form?

Review Answers

1. (x+1)(x+9)
2. (x+5)(x+10)
3. (x+7)(x+3)
4. (x+12)(x+4)
5. (x−3)(x−8)
6. (x−7)(x−6)
7. (x−11)(x−3)
8. (x−5)(x−4)
9. (x−2)(x+7)

10. (x−3)(x+9)
11. (x−6)(x+13)
12. (x−4)(x+8)
13. (x−15)(x+3)
14. (x−10)(x+5)
15. (x−8)(x+5)
16. (x−8)(x+7)
17. −(x+1)(x+1)
18. −(x−3)(x+8)
19. −(x−6)(x−12)
20. −(x−15)(x−10)
21. (x+9)(x+12)
22. −(x−5)(x−6)
23. (x−4)(x+16)
24. (x−20)(x+3)
25. x =−14,x = 2
26. x = 6,x = 2
27. x = 12,x =−3
28. x = 4,x =−5
29. (x−7)
30. (x−1)
31. x2−2x−8 = 0
32. 6x2−7x+2 = 0
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1.3 Factoring Special Products and Solving
Quadratic Equations by Factoring

Learning Objectives

• Factor the difference of two squares.
• Factor perfect square trinomials.
• Factor the sum and difference of cubes.
• Solve quadratic polynomial equation by factoring.

Introduction

When you learned how to multiply binomials we talked about two special products.

The Sum and Difference Formula a2−b2 = (a+b)(a−b)

The Square of a Binomial Formula a2 +2ab+b2 = (a+b)2

a2−2ab+b2 = (a−b)2

The Sum or Difference of Cubes Formula a3 +b3 = (a+b)(a2−ab+b2)

a3−b3 = (a−b)(a2 +ab+b2)

In this section we will learn how to recognize and factor these special products.

Factor the Difference of Two Squares

We use the sum and difference formula to factor a difference of two squares. A difference of two squares can be a
quadratic polynomial in this form.

a2−b2

Both terms in the polynomial are perfect squares. In a case like this, the polynomial factors into the sum and
difference of the square root of each term.

a2−b2 = (a+b)(a−b)

In these problems, the key is figuring out what the a and b terms are. For review here is a table of perfect squares.

TABLE 1.1: Perfect Squares

12 = 1 22 = 4 32 = 9 42 = 16 52 = 25 62 = 36

72 = 49 82 = 64 92 = 81 102 = 100 112 = 121 122 = 144
25
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Lets do some examples of this type.

Example 1

Factor the difference of squares.

a) x2−9

b) x2−100

c) x2−1

Solution

a) Rewrite as x2−9 as x2−32. Now it is obvious that it is a difference of squares.

The difference of squares formula is a2−b2 = (a+b)(a−b)

Lets see how our problem matches with the formula x2−32 = (x+3)(x−3)

The answer is x2−9 = (x+3)(x−3).

We can check to see if this is correct by multiplying (x+3)(x−3).

(x+3)(x−3) = x2−3x+3x−9 = x2−9

The product checks out.

We could factor this polynomial without recognizing that it is a difference of squares. With the methods we learned
in the last section we know that a quadratic polynomial factors into the product of two binomials.

(x± )(x± )

We can think of x2−9 as x2 +0x−9 and use the same method we used in the last section.

We need to find two numbers that multiply to -9 and add to 0, since the middle term is missing.

We can write -9 as the following products

−9 =−1 ·9 and −1+9 = 8

−9 = 1 · (−9) and 1+(−9) =−8

−9 = 3 · (−3) and 3+(−3) = 0 ← This is the correct choice

We can factor x2−9 as (x+3)(x−3), which is the same answer as before.

You can always factor using methods for factoring trinomials, but it is faster if you can recognize special products
such as the difference of squares.

b) Rewrite x2−100 as x2−102. This factors as (x+10)(x−10).

c) Rewrite x2−1 as x2−12. This factors as (x+1)(x−1).

Example 2

Factor the difference of squares.

a) 16x2−25
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b) 4x2−81

c) 49x2−64

Solution

a) Rewrite 16x2−25 as (4x)2−52. This factors as (4x+5)(4x−5).

b) Rewrite 4x2−81 as (2x)2−92. This factors as (2x+9)(2x−9).

c) Rewrite 49x2−64 as (7x)2−82. This factors as (7x+8)(7x−8).

Example 3

Factor the difference of squares:

a) x2− y2

b) 9x2−4y2

c) x2y2−1

Solution

a) x2− y2 factors as (x+ y)(x− y).

b) Rewrite 9x2−4y2 as (3x)2− (2y)2. This factors as (3x+2y)(3x−2y).

c) Rewrite as x2y2−1 as (xy)2−12. This factors as (xy+1)(xy−1).

Example 4

Factor the difference of squares.

a) x4−25

b) 16x4− y2

c) x2y8−64z2

d) x2 +9

Solution

a) Rewrite x4−25 as (x2)2−52. This factors as (x2 +5)(x2−5).

b) Rewrite 16x4− y2 as (4x2)2− y2. This factors as (4x2 + y)(4x2− y).

c) Rewrite x2y4−64z2 as (xy2)2− (8z)2. This factors as (xy2 +8z)(xy2−8z).

d) x2 +9 is not a difference of squares. This expression does not factor. We say x2 +9 is prime.

Factor Perfect Square Trinomials

We use the Square of a Binomial Formula to factor perfect square trinomials. A perfect square trinomial has the
following form.

a2 +2ab+b2 or a2−2ab+b2

In these special kinds of trinomials, the first and last terms are perfect squares and the middle term is twice the
product of the square roots of the first and last terms. In a case like this, the polynomial factors into perfect squares.

a2 +2ab+b2 = (a+b)2

a2−2ab+b2 = (a−b)2
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In these problems, the key is figuring out what the a and b terms are. Lets do some examples of this type.

Example 5

Factor the following perfect square trinomials.

a) x2 +8x+16

b) x2−4x+4

c) x2 +14x+49

Solution

a) x2 +8x+16

The first step is to recognize that this expression is actually perfect square trinomials.

1. Check that the first term and the last term are perfect squares. They are indeed because we can re-write:

x2 +8x+16 as x2 +8x+42.

2. Check that the middle term is twice the product of the square roots of the first and the last terms. This is true also
since we can rewrite them.

x2 +8x+16 as x2 +2 ·4 · x+42

This means we can factor x2 +8x+16 as (x+4)2.

We can check to see if this is correct by multiplying (x+4)(x+4).

(x+4)2 = (x+4)(x+4) = x2 +4x+4x+16 = x2 +8x+16

The answer checks out.

We could factor this trinomial without recognizing it as a perfect square. With the methods we learned in the last
section we know that a trinomial factors as a product of the two binomials in parentheses.

(x± )(x± )

We need to find two numbers that multiply to 16 and add to 8. We can write 16 as the following products.

16 = 1 ·16 and 1+16 = 17

16 = 2 ·8 and 2+8 = 10

16 = 4 ·4 and 4+4 = 8 ← This is the correct choice.

We can factor x2 +8x+16 as (x+4)(x+4) which is the same as (x+4)2.

You can always factor by the methods you have learned for factoring trinomials but it is faster if you can recognize
special products.

b) Rewrite x2−4x+4 as x2 +2 · (−2) · x+(−2)2.
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We notice that this is a perfect square trinomial and we can factor it as: (x−2)2.

c) Rewrite x2 +14x+49 as x2 +2 ·7 · x+72.

We notice that this is a perfect square trinomial as we can factor it as: (x+7)2.

Example 6

Factor the following perfect square trinomials.

a) 4x2 +20x+25

b) 9x2−24x+16

c) x2 +2xy+ y2

Solution

a) Rewrite 4x2 +20x+25 as (2x)2 +2.5 · (2x)+52

We notice that this is a perfect square trinomial and we can factor it as (2x+5)2.

b) Rewrite 9x2−24x+16 as (3x)2 +2 · (−4) · (3x)+(−4)2.

We notice that this is a perfect square trinomial as we can factor it as (3x−4)2.

We can check to see if this is correct by multiplying (3x−4)2 = (3x−4)(3x−4).

3x − 4

3x − 4

− 12x + 16

9x2 − 12x

9x2 − 24x + 16

The product checks out.

c) x2 +2xy+ y2

We notice that this is a perfect square trinomial as we can factor it as (x+ y)2.

Factor a Sum or Difference of Cubes

We use the Sum of Difference of Cubes Formula to factor a sum of difference of cubes. A sum of difference of
cubes has one of the following forms.

a3 +b3 or a3−b3

In these special kinds of binomials, the first and last terms are perfect cubes. In a case like this, the polynomial
factors as follows.

a3 +b3 = (a+b)(a2−ab+b2)

a3−b3 = (a−b)(a2 +ab+b2)

In these problems, the key is figuring out what the a and b terms are. If you write the binomail in the form ( )3±( )3.
The terms in the parentheses represent a and b. Lets do some examples of this type.
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Example 7

Factor the sum of cubes:

a) x3−8

b) 27x3 +64y3

Solution

a) x3−8 = (x)3− (2)3 so a = x and b = 2. The factored form is (x−2)(x2 +2x+4).

b) Rewrite 27x3 +64y3 as (3x)3 +(4y)3 so a = 3x and b = 4y. The factored form is (3x+4y)(9x2−12xy+16y2).

Solve Quadratic Polynomial Equations by Factoring

With the methods we learned in the last two sections, we can factor many kinds of quadratic polynomials. This is
very helpful when we want to solve quadratic equations such as

ax2 +bx+ c = 0

Remember that to solve quadratic equations in expanded form we use the following steps:

Step 1

If necessary, rewrite the equation in standard form so that

Polynomial expression = 0.

Step 2

Factor the polynomial completely.

Step 3

Use the Zero-Product rule to set each factor equal to zero.

Step 4

Solve each equation from Step 3.

Step 5

Check your answers by substituting your solutions into the original equation.

We will do a few examples that show how to solve quadratic equations using the factoring methods we just learned.

Example 8

Solve the following quadratic equations.

a) x2 +7x+6 = 0

b) x2−8x =−12

c) x2 = 2x+15

Solution

a) x2 +7x+6 = 0

Technology Note: It is possible to use a graphing calculator to help find the factors of 6 that add to 7. If we
enter y1 = 6/x, the table features will tell us which values of x are factors of 6. If x divided evenly into 6, then y
will be an integer.
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Now if we view the table we see this.

The table show the factors of 6.

6 = 1 ·6 and 1+6 = 7 ← This is the correct choice.
6 = 2 ·3 and 2+3 = 5

x2 +7x+6 = 0 factors as (x+1)(x+6) = 0

Using the algebraic approach like we have been using all along, we follow the steps below.

Rewrite. This is not necessary since the equation is in the correct form already.

Factor. We can write 6 as a product of the following numbers.

6 = 1 ·6 and 1+6 = 7 ← This is the correct choice.

6 = 2 ·3 and 2+3 = 5

x2 +7x+6 = 0 factors as (x+1)(x+6) = 0

Set each factor equal to zero.

x+1 = 0 or x+6 = 0

Solve.
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x =−1 or x =−6

Check Substitute each solution back into the original equation.

x =−1 (−1)2 +7(−1)+6 = 1−7+6 = 0 Checks

x =−6 (−6)2 +7(−6)+6 = 36−42+6 = 0 Checks

b) x2−8x =−12

Rewrite x2−8x =−12 is rewritten as x2−8x+12 = 0.

Factor. We can write 12 as a product of the following numbers.

12 = 1 ·12 and 1+12 = 13

12 =−1 · (−12) and −1+(−12) =−13

12 = 2 ·6 and 2+6 = 8

12 =−2 · (−6) and −2+(−6) =−8 ← This is the correct choice.

12 = 3 ·4 and 3+4 = 7

12 =−3 · (−4) and −3+(−4) =−7

x2−8x+12 = 0 factors as (x−2)(x−6) = 0

Set each factor equal to zero.

x−2 = 0 or x−6 = 0

Solve.

x = 2 or x = 6

Check. Substitute each solution back into the original equation.

x = 2 (2)2−8(2) = 4−16 =−12 Checks

x = 6 (6)2−8(6) = 36−48 =−12 Checks

c) x2 = 2x+15

Rewrite x2 = 2x+15 is re-written as x2−2x−15 = 0.

Factor. We can write -15 as a product of the following numbers.

−15 = 1 · (−15) and 1+(−15) =−14

−15 =−1 · (15) and −1+(15) = 14

−15 =−3 ·5 and −3+5 = 2

−15 = 3 · (−5) and 3+(−5) =−2 ← This is the correct choice.
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x2−2x−15 = 0 factors as (x+3)(x−5) = 0.

Set each factor equal to zero

x+3 = 0 or x−5 = 0

Solve.

x =−3 or x = 5

Check Substitute each solution back into the original equation.

x =−3 (−3)2 = 2(−3)+15⇒ 9 = 0 Checks

x = 5 (5)2 = 2(5)+15⇒ 25 = 25 Checks.

Example 8

Solve the following quadratic equations.

a) x2−12x+36 = 0

b) x2−81 = 0

c) x2 +20x+100 = 0

Solution

a) x2−12x+36 = 0

Rewrite. This is not necessary since the equation is in the correct form already.

Factor. Re-write x2−12x+36 as x2−2 ·(−6)x+(−6)2. (We can also use the method for factoring x2+bx+c from
the last section and find the factors of c that add to b.)

We recognize this as a difference of squares. This factors as (x−6)2 = 0 or (x−6)(x−6) = 0.

Set each factor equal to zero.

x−6 = 0 or x−6 = 0

Solve.

x = 6 or x = 6

Notice that for a perfect square the two solutions are the same. This is called a double root.

Check. Substitute each solution back into the original equation.

x = 6 62−12(6)+36 = 36−72+36+0 Checks

b) x2−81 = 0
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Rewrite. This is not necessary since the equation is in the correct form already

Factor Rewrite x2−81 = 0 as x2−92 = 0.

We recognize this as a difference of squares. This factors as (x−9)(x+9) = 0.

Set each factor equal to zero.

x−9 = 0 or x+9 = 0

Solve.

x = 9 or x =−9

Check. Substitute each solution back into the original equation.

x = 9 92−81 = 81−81 = 0 Checks

x =−9 (−9)2−81 = 81−81 = 0 Checks

c) x2 +20x+100 = 0

Rewrite. This is not necessary since the equation is in the correct form already.

Factor. Rewrite x2 +20x+100 = 0 as x2 +2 ·10 · x+102

We recognize this as a perfect square trinomial. This factors as: (x+10)2 = 0 or (x+10)(x+10) = 0.

Set each factor equal to zero.

x+10 = 0 or x+10 = 0

Solve.

x =−10 or x =−10 This is a double root.

Check Substitute each solution back into the original equation.

x = 10 (−10)2 +20(−10)+100 = 100−200+100 = 0 Checks out.

Review Questions

Factor the following perfect square trinomials.

1. x2 +8x+16
2. x2−18x+81
3. −x2 +24x−144
4. x2 +14x+49
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5. 4x2−4x+1
6. 25x2 +60x+36
7. 4x2−12xy+9y2

8. x4 +22x2 +121

Factor the following difference of squares.

9. x2−4

10. x2−36

11. −x2 +100

12. x2−400

13. 9x2−4

14. 25x2−49

15. −36x2 +25

16. 16x2−81y2

Factor the following sum or difference of cubes.

17. x3 +27

18. 8x3−1

19. 64x3 +125y3

Solve the following quadratic equation using factoring.

20. x2−11x+30 = 0

21. x2 +4x = 21

22. x2 +49 = 14x

23. x2−64 = 0

24. x2−24x+144 = 0

25. 4x2−25 = 0

26. x2 +26x =−169

27. −x2−16x−60 = 0

28. The polynomial x2−25 has a factor of (x+5). What is the other factor?

29. The polynomial 49x2−100 has a factor of (7x−10). What is the other factor?

30. Factor 4x2 +9 completely, if possible. If it is not factorable, indicate it is prime.

31. Factor 121x2 +169 completely, if possible. If it is not factorable, indicate it is prime.

Review Answers

1. (x+4)2

2. (x−9)2

3. −(x−12)2

4. (x+7)2

5. (2x−1)2
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6. (5x+6)2

7. (2x−3y)2

8. (x2 +11)2

9. (x+2)(x−2)
10. (x+6)(x−6)
11. −(x+10)(x−10)
12. (x+20)(x−20)
13. (3x+2)(3x−2)
14. (5x+7)(5x−7)
15. −(6x+5)(6x−5)
16. (4x+9y)(4x−9y)
17. (x+3)(x2−3x+9)
18. (2x−1)(4x2 +2x+1)
19. (4x+5y)(16x2−20xy+25y2)
20. x = 5,x = 6
21. x =−7,x = 3
22. x = 7 (double solution or double root)
23. x =−8,x = 8
24. x = 12 (double solution or double root)
25. x = 5

2 ,x =−
5
2

26. x =−13 (double solution or double root)
27. x =−10,x =−6
28. (x−5)
29. (7x+10)
30. prime
31. prime
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1.4 Factoring Polynomials Completely and
Solving Polynomial Equations by Factor-
ing

Learning Objectives

• Factor out a common binomial.
• Factor by grouping.
• Factor a quadratic trinomial where a 6= 1.
• Solve polynomial equations by factoring.
• Solve real world problems using polynomial equations.

Introduction

We say that a polynomial is factored completely when we factor as much as we can and we can’t factor any more.
Here are some suggestions that you should follow to make sure that you factor completely.

• Factor all common monomials first.
• Identify special products such as difference of squares or the square of a binomial. Factor according to their

formulas.
• If there are no special products, factor using the methods we learned in the previous sections.
• Look at each factor and see if any of these can be factored further.

Here are some examples.

Example 1

Factor the following polynomials completely.

a) 6x2−30x+36

b) 2x2−8

c) x3 +6x2 +9x

Solution

a) 6x2−30x+36

Factor the common monomial. In this case 6 can be factored from each term.

6(x2−5x+6)

There are no special products. We factor x2−5x+6 as a product of two binomials (x± )(x± ).

The two numbers that multiply to 6 and add to -5 are -2 and -3. Let’s substitute them into the two parenthesis. The
6 is outside because it is factored out.

6(x2−5x+6) = 6(x−2)(x−3)

If we look at each factor we see that we can’t factor anything else.
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The factored form is 6(x−2)(x−3).

b) 2x2−8

Factor common monomials 2x2−8 = 2(x2−4).

We recognize x2−4 as a difference of squares. We factor as 2(x2−4) = 2(x+2)(x−2).

If we look at each factor we see that we can’t factor anything else.

The factored form is 2(x+2)(x−2).

c) x3 +6x2 +9x

Factor common monomials x3 +6x2 +9x = x(x2 +6x+9).

We recognize as a perfect square and factor as x(x+3)2.

If we look at each factor we see that we can’t factor anything else.

The factored form is x(x+3)2.

Example 2

Factor the following polynomials completely.

a) −2x4 +162

b) x5−8x3 +16x

Solution

a) −2x4 +162

Factor the common monomial. In this case, factor -2 rather than 2. It is always easier to factor when leading
coefficient is positive.

−2x4 +162 =−2(x4−81)

We recognize the expression in parenthesis as a difference of squares. We factor and get this result.

−2(x2−9)(x2 +9)

If we look at each factor, we see that the first parenthesis is a difference of squares. After factoring we get:

−2(x+3)(x−3)(x2 +9)

If we look at each factor, we see that we can factor no more.

The complete factored form is −2(x+3)(x−3)(x2 +9).

b) x5−8x3 +16x

Factor out the common monomial x5−8x3 +16x = x(x4−8x2 +16).

We recognize x4−8x2 +16 as a perfect square and we factor it as x(x2−4)2.

We look at each term and recognize that the term in parenthesis is a difference of squares.

We factor and get: x[(x+2)(x−2)]2 = x[(x+2)2(x−2)2] = x(x+2)2(x−2)2.

We use square brackets [ and ] in this expression because x is multiplied by the expression (x+ 2)2(x− 2). When
we have nested grouping symbols we use brackets [ and ] to show the levels of nesting.
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If we look at each factor now we see that we can’t factor anything else.

The complete factored form is: x(x+2)2(x−2)2.

Factor out a Common Binomial

The first step in the factoring process is often factoring the common monomials from a polynomial. Sometimes
polynomials have common terms that are binomials. For example, consider the following expression.

x(3x+2)−5(3x+2)

You can see that the binomial (3x+ 2) appears in both products of the polynomial. This common term can be
factored by writing it in front of a parenthesis. Inside the parenthesis, we write all the terms that are left over when
we divide them by the common factor.

(3x+2)(x−5)

This expression is now completely factored.

Lets look at some more examples.

Example 3

Factor the common binomials.

a) 3x(x−1)+4(x−1)

b) x(4x+5)+(4x+5)

Solution

a) 3x(x−1)+4(x−1) has a common binomial of (x−1).

When we factor the common binomial out, we get (x−1)(3x+4).

b) x(4x+5)+(4x+5) has a common binomial of (4x+5).

When we factor the common binomial out, we get (4x+5)(x+1).

Factor by Grouping

It may be possible to factor a polynomial containing four or more terms by factoring common monomials from
groups of terms. This method is called factor by grouping.

The next example illustrates how this process works.

Example 4

Factor 2x+2y+ax+ay.

Solution

There isn’t a common factor for all four terms in this example. However, there is a factor of 2 that is common to the
first two terms and there is a factor of a that is common to the last two terms. Factor 2 from the first two terms and
factor a from the last two terms.

2x+2y+ax+ay = 2(x+ y)+a(x+ y)
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Now we notice that the binomial (x+ y) is common to both terms. We factor the common binomial and get:

(x+ y)(2+a)

Our polynomial is now factored completely.

Example 5

Factor 3x2 +6x+4x+8.

Solution

We factor 3x from the first two terms and factor 4 from the last two terms.

3x(x+2)+4(x+2)

Now factor (x+2) from both terms.

(x+2)(3x+4).

Now the polynomial is factored completely.

Factor Quadratic Trinomials Where a

Factoring by grouping is a very useful method for factoring quadratic trinomials where a 6= 1. A quadratic polyno-
mial of this type is written in the form:

ax2 +bx+ c

This does not factor as (x±m)(x±n), so it is not as simple as looking for two numbers that multiply to give c and
add to give b. In this case, we must take into account the coefficient that appears in the first term.

To factor a quadratic polynomial where a 6= 1, we follow the following steps.

1. We find the product ac.
2. We look for two numbers that multiply to give ac and add to give b.
3. We rewrite the middle term using the two numbers we just found.
4. We factor the expression by grouping.

Factor Quadratic Trinomials Where a

Trial and error can also be a very useful method for factoring quadratic trinomials where a 6= 1. A quadratic
polynomial such as this one.

ax2 +bx+ c

Using the trial and error process is like undoing the FOIL process used to multiply two binomails. For example the
factored form of 2x2−7x−15 is (2x+3)(x−5). The the first terms in the binomial factors, 2x and x, are factors of
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the first terms of the original trinomial. Also the second terms of the binomial factors, 3 and −5, are factors of the
third term or the constant term of the original trinomail. Finally notice the sum of the product of the inner terms and
outer terms give the middle term of the original trinomial: 3x+(−10x) =−7x. When performing trial and error to
factor a quadratic trinomail, the goal is the find the correct factors of ax2 and c for the binomial factors.

Steps to solving a trinomial by trial and error.

Step 1 Set up a product of two binomials.

( )( )

Step 2 Place the possible factors of ax2 in the first positions of the binomials.

Step 3 Place the possible factors of c in the second positions of the binomial factors.

Step 4 Keep trying different factors of ax2 and c until the sum of the inner product and outer product of the
binomials is equal to the middle term, bx, or the original trinomial.

Lets apply this method to the following examples.

Example 6

Factor the following quadratic trinomials by grouping.

a) 3x2 +8x+4

b) 6x2−11x+4

c) 5x2−6x+1

Solution

Lets follow the steps outlined above.

a) 3x2 +8x+4

Step 1 ac = 3 ·4 = 12

Step 2 The number 12 can be written as a product of two numbers in any of these ways:

12 = 1 ·12 and 1+12 = 13

12 = 2 ·6 and 2+6 = 8 This is the correct choice.

12 = 3 ·4 and 3+4 = 7

Step 3 Re-write the middle term as: 8x = 2x+6x, so the problem becomes the following.

3x2 +8x+4 = 3x2 +2x+6x+4

Step 4: Factor an x from the first two terms and 2 from the last two terms.

x(3x+2)+2(3x+2)

Now factor the common binomial (3x+2).
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(3x+2)(x+2)

The factored form is (3x+2)(x+2).

To check if this is correct we multiply (3x+2)(x+2).

(3x+2)(x+2) = 3x2 +6x+2x+4 = 3x2 +8x+4

The answer checks out.

b) 6x2−11x+4

Step 1 ac = 6 ·4 = 24

Step 2 The number 24 can be written as a product of two numbers in any of these ways.

24 = 1 ·24 and 1+24 = 25

24 =−1 · (−24) and −1+(−24) =−25

24 = 2 ·12 and 2+12 = 14

24 =−2 · (−12) and −2+(−12) =−14

24 = 3 ·8 and 3+8 = 11

24 =−3 · (−8) and −3+(−8) =−11 ← This is the correct choice.

24 = 4 ·6 and 4+6 = 10

24 =−4 · (−6) and −4+(−6) =−10

Step 3 Re-write the middle term as −11x =−3x−8x, so the problem becomes

6x2−11x+4 = 6x2−3x−8x+4

Step 4 Factor by grouping. Factor a 3x from the first two terms and factor -4 from the last two terms.

3x(2x−1)−4(2x−1)

Now factor the common binomial (2x−1).

(2x−1)(3x−4)

Our factored form is (2x−1)(3x−4).

c) 5x2−6x+1

Step 1 ac = 5 ·1 = 5

Step 2 The number 5 can be written as a product of two numbers in any of these ways:
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5 = 1 ·5 and 1+5 = 6

5 =−1 · (−5) and −1+(−5) =−6 ← This is the correct choice

Step 3 Rewrite the middle term as −6x =−x−5x. The problem becomes

5x2−6x+1 = 5x2− x−5x+1

Step 4 Factor by grouping. Factor an x from the first two terms and a factor of -1 from the last two terms:

x(5x−1)−1(5x−1)

Now factor the common binomial (5x−1).

(5x−1)(x−1).

Our factored form is (5x−1)(x−1).

Solve Quadratic Equations by Factoring

Now that we know the basics of factoring, we can solve some simple polynomial equations. We already saw how
we can use the Zero-product Property to solve polynomials in factored form. Here you will learn how to solve
polynomials in expanded form. These are the steps for this process.

Step 1

If necessary, re-write the equation in standard form such that:

Polynomial expression = 0.

Step 2

Factor the polynomial completely.

Step 3

Use the zero-product property to set each factor equal to zero.

Step 4

Solve each equation from step 3

Step 5

Check your answers by substituting your solutions into the original equation.

Example 7

Solve the following polynomial equations.

a) 3x2−24x+36 = 0

b) 2x2 = 50

c) 12x2−7x−10 = 0
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Solution:

a) 3x2−24x+36 = 0

Rewrite. This is not necessary since the equation is in the correct form.

Factor out the GCF of the trinomial. Notice 3 is the greatest common factor.

Factor 3(x2−8x+12) = 0⇒ 3(x−6)(x−2) = 0

Set each factor equal to zero.

x−6 = 0 or x−2 = 0

Solve.

x = 6 or x = 2

Check. Substitute each solution back into the original equation.

x = 6 ⇒ 3(6)2−24(6)+36 = 0 checks

x = 2 ⇒ 3(2)2−24(2)+36 = 0 checks

Answer x = 6,x = 2

b) 2x2 = 50

Rewrite. 2x2−50 = 0.

Factor. 2(x2−25) = 0⇒ 2(x+5)(x−5) = 0.

Set each factor equal to zero.

2 6= 0 or x−5 = 0 or x+5 = 0

Solve.

x = 5 or x =−5

Notice the factor of 2 does not contain a variable and does give give us a solution. We normally will not set
the constant factors equal to zero.

Check. Substitute each solution back into the original equation.

x = 5⇒ 2(5)2−50 = 0 checks

x =−5⇒ 2(−5)2−50 = 0 checks

Answer x = 5,x =−5

44

http://www.ck12.org


www.ck12.org Chapter 1. Factoring Polynomials and Polynomial Equations

c) 12x2−7x−10 = 0

Rewrite. This step is not needed.

Factor.

(3x+2)(4x−5)

.

Set each factor equal to zero.

3x+2 = 0 or 4x−5 = 0

Solve.

x =−2
3

or x =
5
4

Check Substitute each solution back into the original equation.

x =−2/3⇒ 12(−2/3)2−7(−2/3)−10 = 0

x =−2/3⇒ 12(4/9)−7(−2/3)−10 = 0

x =−2/3⇒ (48/9)+(14/3)−10 = 0

x =−2/3⇒ (48/9)+(42/9)−90/9 = 0 checks

x = 5/4⇒ 12(5/4)2−7(5/4)−10 = 0

x = 5/4⇒ 12(25/16)−7(5/4)−10 = 0

x = 5/4⇒ (300/16)− (35/4)−10 = 0

x = 5/4⇒ (300/16)− (140/16)− (160/16) = 0 checks

Answer x =−2
3 ,x =

5
4

Solve Real-World Problems Using Polynomial Equations

Now that we know most of the factoring strategies for quadratic polynomials we can see how these methods apply
to solving real world problems.

Example 8 Pythagorean Theorem

One leg of a right triangle is 3 feet longer than the other leg. The hypotenuse is 15 feet. Find the dimensions of the
right triangle.

Solution
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Let x = the length of one leg of the triangle, then the other leg will measure x+3.

Let’s draw a diagram.

Use the Pythagorean Theorem (leg1)
2 +(leg2)

2 = (hypotenuse)2 or a2 +b2 = c2.

Here a and b are the lengths of the legs and c is the length of the hypotenuse.

Let’s substitute the values from the diagram.

a2 +b2 = c2

x2 +(x+3)2 = 152

In order to solve, we need to get the polynomial in standard form. We must first distribute, collect like terms and
re-write in the form polynomial = 0.

x2 +(x+3)2 = 152

x2 + x2 +6x+9 = 225

2x2 +6x+9 = 225

2x2 +6x−216 = 0

Factor the common monomial 2(x2 +3x−108) = 0.

To factor the trinomial inside the parenthesis we need to two numbers that multiply to -108 and add to 3. It would
take a long time to go through all the options so let’s try some of the bigger factors.

−108 =−12· and −12+9 =−3

−108 = 12 · (−9) and 12+(−9) = 3 ← This is the correct choice.

We factor as: 2(x−9)(x+12) = 0.

Set each term equal to zero and solve.

x−9 = 0 x+12 = 0

or

x = 9 x =−12
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It makes no sense to have a negative answer for the length of a side of the triangle, so the answer must be the
following.

Answer x = 9 and x+3 = 12, so one leg is 9 feet and the other leg is 12 feet.

Check 92 +122 = 81+144 = 225 = 152 so the answer checks.

Example 9 Number Problems

The product of two positive numbers is 60. Find the two numbers if one of the numbers is 4 more than the other.

Solution

Let x = one of the numbers and x+4 equals the other number.

The product of these two numbers equals 60. We can write the equation.

x(x+4) = 60

In order to solve we must write the polynomial in standard form. Distribute, collect like terms and re-write in the
form polynomial = 0.

x2 +4x = 60

x2 +4x−60 = 0

Factor by finding two numbers that multiply to -60 and add to 4. List some numbers that multiply to -60:

−60 =−4 ·15 and −4+15 = 11

−60 = 4 · (−15) and 4+(−15) =−11

−60 =−5 ·12 and −5+12 = 7

−60 = 5 · (−12) and 5+(−12) =−7

−60 =−6 ·10 and −6+10 = 4 ← This is the correct choice.

−60 = 6 · (−10) and 6+(−10) =−4

The expression factors as (x+10)(x−6) = 0.

Set each term equal to zero and solve.

x+10 = 0 x−6 = 0

or

x =−10 x = 6

Since we are looking for positive numbers, the answer must be the following.

Answer x = 6 and xx+4 = 10, so the two numbers are 6 and 10.

Check 6 ·10 = 60 so the answer checks.

Example 10 Area of a rectangle

A rectangle has sides of x+5 and x−3. What value of x gives and area of 48?
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Area of the rectangle = length×widthMake a sketch of this situation.

(x+5)(x−3) = 48

In order to solve, we must write the polynomial in standard form. Distribute, collect like terms and rewrite in the
form polynomial = 0.

x2 +2x−15 = 48

x2 +2x−63 = 0

Factor by finding two numbers that multiply to -63 and add to 2. List some numbers that multiply to -63.

−63 = 7 · (−9) and 7+(−9) =−2

−63 =−7 ·9 and −7+9 = 2 ← This is the correct choice.

The expression factors as (x+9)(x−7) = 0.

Set each term equal to zero and solve.

x+9 = 0 x−7 = 0

or

x =−9 x = 7

Since we are looking for positive numbers, the answer must be x = 7.

Answer The width is x−3 = 4 and x+5 = 12, so the width is 4 and the length is 7.

Check 4 ·12 = 48 so the answer checks out.

Review Questions

Factor completely.

1. 2x2 +16x+30
2. −x3 +17x2−70x

48

http://www.ck12.org


www.ck12.org Chapter 1. Factoring Polynomials and Polynomial Equations

3. 2x4−512
4. 12x3 +12x2 +3x

Factor by grouping.

5. 6x2−9x+10x−15

6. 5x2−35x+ x−7

7. 9x2−9x− x+1

8. 4x2 +32x−5x−40

Factor the following quadratic binomials by grouping or trial and error.

9. 4x2 +25x−21

10. 6x2 +7x+1

11. 4x2 +8x−5

12. 3x2 +16x+21

Solve.

13. 3x2 +24x+36 = 0

14. 5x2−45 = 0

15. 20x2−39x+18 = 0

16. 4x2 +12x+9 = 0

Solve the following application problems:

17. One leg of a right triangle is 7 feet longer than the other leg. The hypotenuse is 13 feet. Find the dimensions
of the right triangle.

18. A rectangle has sides of x+2 and x−1. What value of x gives and area of 108?

19. The product of two positive numbers is 120. Find the two numbers if one numbers is 7 more than the other.

20. Framing Warehouse offers a picture framing service. The cost for framing a picture is made up of two parts.
The cost of glass is $1 per square foot. The cost of the frame is $2 per linear foot. If the frame is a square, what size
picture can you get framed for $20?

Review Answers

1. 2(x+3)(x+5)
2. −x(x−7)(x−10)
3. 2(x−4)(x+4)(x2 +16)
4. 3x(2x+1)2

5. (2x−3)(3x+5)
6. (x−7)(5x+1)
7. (9x−1)(x−1)
8. (x+8)(4x−5)
9. (4x−3)(x+7)

10. (6x+1)(x+1)
11. (2x−1)(2x+5)
12. (x+3)(3x+7)
13. x =−2,x =−6
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14. x = 3,x =−3
15. x = 3

4 ,x =
6
5

16. x =−3
2 (double solution or double root)

17. Leg 1 = 5 f t,Leg 2 = 12 f t
18. x = 10
19. Numbers are 8 and 15.
20. You can frame a 2 foot × 2 foot picture.

Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9619 .
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2.1 Variation Models

Learning Objectives

• Distinguish direct and inverse variation.
• Graph inverse variation equations.
• Write inverse variation equations.
• Solve real-world problems using inverse variation equations.

Introduction

Many variables in real-world problems are related to each other by variations. A variation is an equation that relates
a variable to one or more variables by the operations of multiplication and division. There are three different kinds
of variation problems: direct variation, inverse variation and joint variation.

Distinguish Direct and Inverse Variation

In direct variation relationships, the related variables will either increase together or decrease together at a steady
rate. For instance, consider a person walking at a constant rate of three miles per hour. As time increases, the
distance covered by the person walking also increases at the rate of three miles each hour. The distance and time are
related to each other by a direct variation.

distance = rate× time

Since the speed is a constant 3 miles per hour, we can write: d = 3t.

Direct Variation

The general equation for a direct variation is of the form

y = kx.

k is called the constant of proportionality

You can see from the equation that a direct variation is a linear equation with a y−intercept of zero. The graph
of a direct variation relationship is a straight line passing through the origin whose slope is k the constant of
proportionality.
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A second type of variation is inverse variation. When two quantities are related to each other inversely, as one
quantitiy increases, the other one decreases and vice-versa in a way that the product of the two quantities remains
constant.

For instance, if we look at the formula distance = rate× time again and solve for time, we obtain:

time =
distance

rate

If we keep the distance constant, we see that as the speed of an object increases, then the time it takes to cover
that distance decreases. Consider a car traveling a distance of 90 miles, then the formula relating time and speed is
t = 90

r .

Inverse Variation

The general equation for inverse variation is of the form

y =
k
x

where k is called the constant of proportionality.

In this chapter, we will investigate how the graph of these relationships behave.

Another type variation is a joint variation. In this type of relationship, one variable may vary as a product of two or
more variables.

For example, the volume of a cylinder is given by:

V = πr2 ·h

In this formula, the volume varies directly as the product of the square of the radius of the base and the height of the
cylinder. The constant of proportionality here is the number π.

In many application problems, the relationship between the variables is a combination of variations. For instance
Newton’s Law of Gravitation states that the force of attraction between two spherical bodies varies jointly as the
masses of the objects and inversely as the square of the distance between them:

F = G
m1m2

d2
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In this example the constant of proportionality, G, is called the gravitational constant and its value is given by
G≈ 6.674×10−11N ·m2/kg2.

Graph Inverse Variation Equations

We saw that the general equation for inverse variation is given by the formula y = k
x , where k is a constant of

proportionality. We will now show how the graphs of such relationships behave. We start by making a table of
values. In most applications, x and y are positive. So in our table, we will choose only positive values of x.

Example 1

Graph an inverse variation relationship with the proportionality constant k = 1.

Solution

Since k = 1, the inverse variation is given by the equation y = 1
x .

TABLE 2.1:

x y
0 y = 1

0 is undefined
1
4 y = 1

1
4
= 4

1
2 y = 1

1
2
= 2

3
4 y = 1

3
4
≈ 1.33

1 y = 1
1 = 1

3
2 y = 1

3
2
≈ 0.67

2 y = 1
2 = 0.5

3 y = 1
3 ≈ 0.33

4 y = 1
4 = 0.25

5 y = 1
5 = 0.2

10 y = 1
10 = 0.1

Here is a graph showing these points connected with a smooth curve.

Both the table and the graph demonstrate the relationship between variables in an inverse variation. As one variable
increases, the other variable decreases and vice-versa. Notice that when x = 0, the value of y is undefined. The graph
shows that when the value of x is very small, the value of y is very big and it approaches infinity as x gets closer and
closer to zero.
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Similarly, as the value of x gets very large, the value of y gets smaller and smaller, but never reaches the value of
zero. We will investigate this behavior in detail throughout this chapter.

Write Inverse Variation Equations

As we saw earlier, an inverse variation fulfills the equation: y = k
x . In general, we need to know the value of y at

a particular value of x in order to find the proportionality constant. After the proportionality constant is known, we
can find the value of y for any given value of x.

Example 2

y is inversely proportional to x, and y = 10 when x = 5. Find y when x = 2.

Solution

Since y is inversely proportional to x,

then the general relationship tells us: y =
k
x

Substitute in the values y = 10 and x = 5. 10 =
k
5

Solve for k by multiplying both sides of the equation by 5. k = 50

Now we put k back into the general equation.

The inverse relationship is given by: y =
50
x

When x = 2 : y =
50
2

or y = 25

Answer y = 25

Example 3

If p is inversely proportional to the square of q, and p = 64 when q = 3. Find p when q = 5.

Solution:

Since p is inversely proportional to q2,

then the general equation is: p =
k
q2

Substitute in the values p = 64 and q = 3. 64 =
k
32 or 64 =

k
9

Solve for k by multiplying both sides of the equation by 9. k = 576

The inverse relationship is given by: p =
576
q2

When q = 5 : p =
576
25

or p = 23.04

Answer p = 23.04.

Solve Real-World Problems Using Inverse Variation Equations

Many formulas in physics are described by variations. In this section we will investigate some problems that are
described by inverse variations.
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Example 4

The frequency, f , of sound varies inversely with wavelength, λ. A sound signal that has a wavelength of 34 meters
has a frequency of 10 hertz. What frequency does a sound signal of 120 meters have?

Solution

The inverse variation relationship is f =
k
λ

Substitute in the values λ = 34 and f = 10. 10 =
k

34
Multiply both sides by 34. k = 340

Thus, the relationship is given by: f =
340
λ

Plug in λ = 120 meters. f =
340
120
⇒ f ≈ 2.83

Answer f = 2.83 Hertz

Example 5

Electrostatic force is the force of attraction or repulsion between two charges. The electrostatic force is given by the
formula: F =

(
Kq1q2

d2

)
where q1 and q2 are the charges of the charged particles, d is the distance between the charges

and k is proportionality constant. In this example, the charges q1 and q2 do not change and are, thus, constants and
can then be combined with the other constant k to form a new constant K. The equation is rewritten as F =

( K
d2

)
.

If the electrostatic force is 740 Newtons when the distance between charges is 5.3×10−11 meters, what is F when
d = 2.0×10−10 meters?

Solution

The inverse variation relationship is F =
K
d2

Plug in the values F = 740 and d = 5.3×10−11. 740 =
K

(5.3×10−11)2

Multiply both sides by (5.3×10−11)2. K = 740
(
5.3×10−11)2 ≈ 2.08×10−18

The electrostatic force is given by F =
2.08×10−18

d2

When d = 2.0×10−10 F =
2.08×10−18

(2.0×10−10)2

Enter
2.08∗10(−18)(
2.0∗10(−10)

)2 into a calculator. F = 52

Answer F = 52 Newtons

Note: In the last example, you can also compute F = 2.08×10−18

(2.0×10−10)
2 by hand.
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F =
2.08×10−18

(2.0×10−10)2

=
2.08×10−18

4.0×10−20

=
2.08×1020

4.0×1018

=
2.08
4.0

(
102)

= 0.52(100)

= 52

This illustrates the usefulness of scientific notation.

Review Questions

Graph the following inverse variation relationships.

1. y = 3
x

2. y = 10
x

3. y = 1
4x

4. y = 5
6x

5. If z is inversely proportional to w, and z = 81 when w = 9, find w when z = 24.
6. If y is inversely proportional to x, and y = 2 when x = 8, find y when x = 12.
7. If a is inversely proportional to the square root of b, and a = 32 when b = 9, find b when a = 6.
8. If w is inversely proportional to the square of u and w = 4 when u = 2, find w when u = 8.
9. If x is proportional to y and inversely proportional to z, and x = 2 when y = 10 and z = 25, find x when y = 8

and z = 35.
10. If a varies directly with b and inversely with the square of c, and a = 10 when b = 5 and c = 2, find the value

of a when b = 3 and c = 6.
11. The intensity of light is inversely proportional to the square of the distance between the light source and the

object being illuminated. A light meter that is 10 meters from a light source registers 35 lux. What intensity
would it register 25 meters from the light source?

12. Ohm’s Law states that current flowing in a wire is inversely proportional to the resistance of the wire. If the
current is 2.5 Amperes when the resistance is 20 ohms, find the resistance when the current is 5 Amperes.

13. The volume of a gas varies directly to its temperature and inversely to its pressure. At 273 degrees Kelvin and
pressure of 2 atmospheres, the volume of the gas is 24 Liters. Find the volume of the gas when the temperature
is 220 dgreees Kelvin and the pressure is 1.2 atmospheres.

14. The volume of a square pyramid varies jointly as the height and the square of the length of the base. A square
pyramid whose height is 4 inches and whose base has a side length of 3 inches has a volume of 12 cubic
inches. Find the volume of a square pyramid that has a height of 9 inches and whose base has a side length of
5 inches.

Review Answers

1.
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2.

3.

4.
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5. w = 243
8

6. y = 4
3

7. b = 256

8. w = 1
4

9. x = 8
7

10. a = 2
3

11. I = 5.6 lux

12. R = 10 ohms

13. V ≈ 32.2 L

14. V = 75 in3
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2.2 Graphs of Rational Functions

Learning Objectives

• Compare graphs of inverse variation equations.
• Graph rational functions.
• Solve real-world problems using rational functions.

Introduction

In this section, you will learn how to graph rational functions. Graphs of rational functions are very distinctive.
These functions are characterized by the fact that the function gets closer and closer to certain values but never
reaches those values. In addition, because rational functions may contain values of x where the function does not
exist, the function can take values very close to the excluded values but never cross through these values. This
behavior is called asymptotic behavior and we will see that rational functions can have horizontal asymptotes,
vertical asymptotes or oblique (or slant) asymptotes.

Compare Graphs of Inverse Variation Equations

Inverse variation problems are the simplest example of rational functions. We saw that an inverse variation has the
general equation: y = k

x or f (x) = k
x . In most real-world problems, the x and y values take only positive values.

Below, we will show graphs of three inverse variation functions.

Example 1

On the same coordinate grid, graph an inverse variation relationships with the proportionality constants k = 1,k = 2,
and k = 1

2 .

Solution

We will not show the table of values for this problem, but rather we can show the graphs of the three functions on the
same coordinate axes. We notice that for larger constants of proportionality, the curve decreases at a slower rate than
for smaller constants of proportionality. This makes sense because, basically the value of y is a result of dividing the
proportionality constant by the input value x, so we should expect larger values of y for larger values of k.
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Graph Rational Functions

We will now extend the domain and range of rational equations to include negative values of x and y. We will first
plot a few rational functions by using a table of values, and then we will talk about distinguishing characteristics of
rational functions that will help us make better graphs.

Recall that one of the basic rules of arithmetic is that although 0 can be divided by a nonzero number, you cannot
divide a number by 0. So:

0
5
= 0

while

5
0

is Undefined.

Recall in arithmetic, we used the relationship between multiplication and division to justify why these facts are true:
If a

b = c, then b× c = a and vice versa. There is no number, which when multiplied by 0, gives 5. So there is no
number for which 5

0 is defined.

As we graph rational functions, we need to always pay attention to values of x that will cause us to divide by 0.

Example 2

Graph the function f (x) = 1
x .

Solution

Before we make a table of values, we should notice that the function is not defined for x = 0. This means that the
graph of the function will not have a value at that point. Since the value of x = 0 is special, we should make sure
to pick enough values close to x = 0 in order to get a good idea how the graph behaves. Lets make two tables: one
for x−values smaller than zero and one for x−values larger than zero. For the table of values it may be helpful to
replace f(x) with y. Let y = 1

x , where y = f (x).

TABLE 2.2:

x y
−5 y = 1

−5 =−0.2
-4 y = 1

−4 =−0.25
-3 y = 1

−3 =−0.33
-2 y = 1

−2 =−0.5
-1 y = 1

−1 =−1
-0.5 y = 1

−0.5 =−2
-0.4 y = 1

−0.4 =−2.5
-0.3 y = 1

−0.3 ≈−3.3
-0.2 y = 1

−0.2 =−5
-0.1 y = 1

−0.1 =−10

TABLE 2.3:

x y
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TABLE 2.3: (continued)

x y
0.1 y = 1

0.1 = 10
0.2 y = 1

0.2 = 5
0.3 y = 1

0.3 ≈ 3.3
0.4 y = 1

0.4 = 2.5
0.5 y = 1

0.5 = 2
1 y = 1

1 = 1
2 y = 1

2 = 0.5
3 y = 1

3 ≈ 0.33
4 y = 1

4 = 0.25
5 y = 1

5 = 0.2

We can see in the table that as we pick positive values of x closer and closer to zero, y becomes increasing large. As
we pick negative values of x closer and close to zero, y becomes increasingly small (or more and more negative).

Notice on the graph that for values of x near 0, the points on the graph get closer and closer to the vertical line x = 0.
The line x = 0 is called a vertical asymptote of the function f (x) = 1

x .

We also notice that as x gets larger in the positive direction or in the negative direction, the value of y gets closer
and closer to, but it will never actually equal zero. Why? Since f (x) = 1

x , there are no values of x that will make
the fraction zero. For a fraction to equal zero, the numerator must equal zero. The horizontal line y = 0 is called a
horizontal asymptote of the function f (x) = 1

x .

Asymptotes are usually denoted as dashed lines on a graph. They are not part of the function. A vertical asymptote
shows that the function cannot take the value of x represented by the asymptote. A horizontal asymptote shows the
value of y that the function approaches for large absolute values of x.
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Here we show the graph of our function with the vertical and horizontal asymptotes drawn on the graph.

Next we will show the graph of a rational function that has a vertical asymptote at a non-zero value of x.

Example 3

Graph the function f (x) = 1
(x−2)2 .

Solution

Before we make a table of values we can see that the function is not defined for x = 2 because that will cause division
by 0. This tells us that there should be a vertical asymptote at x = 2. We start graphing the function by drawing the
vertical asymptote.

Now lets make a table of values. Let y = 1
(x−2)2 , where y = f (x).

TABLE 2.4:

x y
0 y = 1

(0−2)2 =
1
4

1 y = 1
(1−2)2 = 1

1.5 y = 1
(1.5−2)2 = 4

2 undefined
2.5 y = 1

(2.5−2)2 = 4
3 y = 1

(3−2)2 = 1
4 y = 1

(4−2)2 =
1
4

Here is the resulting graph.
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Notice that we did not pick as many values for our table this time. This is because we should have a good idea what
happens near the vertical asymptote. We also know that for large values of x, both positive and negative, the value
of y could approach a constant value.

In this case, that constant value is y = 0. This is the horizontal asymptote.

A rational function does not need to have a vertical or horizontal asymptote. The next example shows a rational
function with no vertical asymptotes.

Example 4

Graph the function f (x) = x2

x2+1 .

Solution

We can see that this function will have no vertical asymptotes because the denominator of the function will never
be zero. Lets make a table of values to see if the value of y approaches a particular value for large values of x, both
positive and negative.

Let y = x2

(x2+1) , where y = f (x).

TABLE 2.5:

x y = x2

x2+1

−3 y = (−3)2

(−3)2+1 = 9
10 = 0.9

-2 y = (−2)2

(−2)2+1 = 4
5 = 0.8

-1 y = (−1)2

(−1)2+1 = 1
2 = 0.5

0 y = (0)2

(0)2+1 = 0
1 = 0

1 y = (1)2

(1)2+1 = 1
2 = 0.5

2 y = (2)2

(2)2+1 = 4
5 = 0.8

2 y = (3)2

(3)2+1 = 9
10 = 0.9

Below is the graph of this function.

The function has no vertical asymptote. However, we can see that as the values of |x| get larger, the value of y get
closer and closer to 1, so the function has a horizontal asymptote at y = 1.

Holes in Graphs of Rational Functions

When a value of x makes both the numerator and denominator equal to zero, there is a hole in the graph at that
value of x. This means at a single point for which the numerator and denominator equals zero, there is a hole in
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the graph, not a vertical asymptote. The numerator and denominator are both equal to zero when the numerator and
denominator share a common factor containing a variable.

If we consider the rational function:

f (x) =
x2−2x−3
x2−5x+6

Factor the numerator and denominator.

f (x) =
(x−3)(x+1)
(x−3)(x−2)

Notice x = 3 and x = 2 make the denominator equal to zero. However, x = 3 makes the numerator and denominator
equal to zero. As a result, the graph has a hole at x = 3 and a vertical asymptote at x = 2. See the graph of f(x)
below.

FIGURE 2.1

Notice if we simplify the function:

f (x) =�
���(x−3)1(x+1)

��
��(x−3)1(x−2)

=
x+1
x−2

The graph above looks just like the graph of f (x) = x+1
x−2 except for the hole at x = 2.

We need to remember that values of x that only make the denominator equal zero will result in vertical asymptotes.
However, values of x that make both the numerator and denominator equal to zero will result in a hole in the graph.

65

http://www.ck12.org


2.2. Graphs of Rational Functions www.ck12.org

More on Horizontal Asymptotes

We said that a horizontal asymptote is the value of y that the function approaches for large values of |x|. When we
plug in large values of x in our function, higher powers of x get larger more quickly than lower powers of x. For
example,

f (x) =
2x2 + x−1
3x2−4x+3

If we plug in a large value of x, say x = 100, we obtain:

y =
2(100)2 +(100)−1
3(100)2−4(100)+3

=
20000+100−1
30000−400+2

We can see that the first terms in the numerator and denominator are much bigger that the other terms in each
expression. One way to find the horizontal asymptote of a rational function is to ignore all terms in the numerator
and denominator except for the highest powers.

In this example the horizontal asymptote is y = 2x2

3x2 which simplifies to y = 2
3 .

In the function above, the highest power of x was the same in the numerator as in the denominator. Now consider a
function where the power in the numerator is less than the power in the denominator.

f (x) =
x

x2 +3

As before, we ignore all but the terms except the highest power of x in the numerator and the denominator.

The horizontal asymptote is y = x
x2 which simplifies to y = 1

x .

For large values of x, the value of y gets closer and closer to zero. Therefore the horizontal asymptote in this case is
y = 0.

To Summarize:

• Find vertical asymptotes by setting the denominator equal to zero and solving for x.
• For horizontal asymptotes, we must consider several cases for finding horizontal asymptotes.

– If the highest power of x in the numerator is less than the highest power of x in the denominator, then the
horizontal asymptote is at y = 0.

– If the highest power of x in the numerator is the same as the highest power of x in the denominator, then

the horizontal asymptote is at y = coefficient of highest power of x
coefficient of highest power of x

– If the highest power of x in the numerator is greater than the highest power of x in the denominator, then
we don’t have a horizontal asymptote, we could have what is called an oblique (slant) asymptote or no
asymptote at all.

Example 5

Find the vertical and horizontal asymptotes for the following functions.

a) f (x) = 1
x−1

b) f (x) = 3x
4x+2

c) f (x) = x2−2
2x2+3
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d) f (x) = x3

x2−3x+2

Solution

a) Vertical asymptotes

Set the denominator equal to zero. x−1 = 0⇒ x = 1 is the vertical asymptote.

Horizontal asymptote

Keep only highest powers of x. y = 1
x ⇒ y = 0 is the horizontal asymptote.

b) Vertical asymptotes

Set the denominator equal to zero. 4x+2 = 0⇒ x =−1
2 is the vertical asymptote.

Horizontal asymptote

Keep only highest powers of x. y = 3x
4x ⇒ y = 3

4 is the horizontal asymptote.

c) Vertical asymptotes

Set the denominator equal to zero. 2x2+3 = 0⇒ 2x2 =−3⇒ x2 =−3
2 Since there are no solutions to this equation

there is no vertical asymptote.

Horizontal asymptote

Keep only highest powers of x. y = x2

2x2 ⇒ y = 1
2 is the horizontal asymptote.

d) Vertical asymptotes

Set the denominator equal to zero. x2−3x+2 = 0

Factor. (x−2)(x−1) = 0

Solve. x = 2 and x = 1 are vertical asymptotes.

Horizontal asymptote. There is no horizontal asymptote because power of numerator is larger than the power of
the denominator

Notice the function in part d of Example 5 had more than one vertical asymptote. Here is an example of another
function with two vertical asymptotes.

Example 6

Graph the function f (x) = −x2

x2−4 .

Solution

We start by finding where the function is undefined.

Lets set the denominator equal to zero. x2−4 = 0

Factor. (x−2)(x−2) = 0

Solve. x = 2,x =−2

We find that the function is undefined for x = 2 and x =−2, so we know that there are vertical asymptotes at these
values of x.

We can also find the horizontal asymptote by the method we outlined above.

Horizontal asymptote is at y = −x2

x2 or y =−1.

Start plotting the function by drawing the vertical and horizontal asymptotes on the graph.

Now, lets make a table of values. Because our function has a lot of detail we must make sure that we pick enough
values for our table to determine the behavior of the function accurately. We must make sure especially that we pick
values close to the vertical asymptotes.
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Let y = −x2

x2−4 , where y = f (x)

TABLE 2.6:

x y

−5 y = −(−5)2

(−5)2−4 = −25
21 ≈−1.19

-4 y = −(−4)2

(−4)2−4 = −16
12 ≈−1.33

-3 y = −(−3)2

(−3)2−4 = −9
5 =−1.8

-2.5 y = −(−2.5)2

(−2.5)2−4 = −6.25
2.25 ≈−2.8

-1.5 y = −(−1.5)2

(−1.5)2−4 = −2.25
−1.75 ≈ 1.3

-1 y = −(−1)2

(−1)2−4 = −1
−3 ≈ 0.33

-0 y = (−0)2

(−0)2−4 = 0
−4 = 0

1 y = −12

(1)2−4 = −1
−3 ≈ 0.33

1.5 y = −1.52

(1.5)2−4 = −2.25
−1.75 ≈ 1.3

2.5 y = −2.52

(2.5)2−4 = −6.25
2.25 ≈−2.8

3 y = −32

(−3)2−4 = −9
5 =−1.8

4 y = −42

(−4)2−4 = −16
12 ≈−1.33

5 y = −52

(−5)2−4 = −25
21 ≈−1.19

Here is the resulting graph.

Solve Real-World Problems Using Rational Functions

Electrical Circuits

Electrical circuits are commonplace is everyday life. For instance, they are present in all electrical appliances in
your home. The figure below shows an example of a simple electrical circuit. It consists of a battery which provides
a voltage (V , measured in Volts, V ), a resistor (R, measured in ohms, Ω) which resists the flow of electricity, and an
ammeter that measures the current (I, measured in amperes, A) in the circuit.
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Ohm’s Law gives a relationship between current, voltage and resistance. It states that

I =
V
R

Your light bulb, toaster and hairdryer are all basically simple resistors. In addition, resistors are used in an electrical
circuit to control the amount of current flowing through a circuit and to regulate voltage levels. One important reason
to do this is to prevent sensitive electrical components from burning out due to too much current or too high a voltage
level. Resistors can be arranges in series or in parallel.

For resistors placed in a series, the total resistance is just the sum of the resistances of the individual resistors.

Rtot = R1 +R2

For resistors placed in parallel, the reciprocal of the total resistance is the sum of the reciprocals of the resistance of
the individual resistors.

1
Rtot

= 1
R1

+ 1
R2

Example 7

Find the quantity labeled x in the following circuit.
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Solution

We use the formula that relates voltage, current and resistance I = V
R

Substitute in the known values: I = 2,V = 12: 2 = 12
R

Multiply both sides by R. 2R = 12

Divide both sides by 2. R = 6 Ω

Answer 6 Ω

Example 8

Find the quantity labeled x in the following circuit.

Solution

Ohms Law also says Itotal =
Vtotal
Rtotal

Plug in the values we know, I = 2.5 and V = 9.

2.5 = 9
Rtotal

Multiply both sides by Rtotal: 2.5Rtotal = 9

Divide both sides by 2.5. Rtotal = 3.6 Ω

Since the resistors are placed in parallel, the total resistance is given by

1
Rtotal

=
1
x
+

1
20

⇒ 1
3.6

=
1
x
+

1
20

Subtract 1
20 on both sides: 1

3.6 −
1

20 = 1
x

Build up fraction on the left to find a common denominator: 20
72 −

3.6
72 = 1

x

Subtract the fractions: 16.4
72 = 1

x

Use proportions and solve: 16.4x = 72

Divide both sides by 6.4 : x = 4.39 Ω

Answer x = 4.39 Ω

Review Questions

Find all the vertical and horizontal asymptotes of the following rational functions.
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1. f (x) = 4
x+2

2. f (x) = 5x−1
2x−6

3. f (x) = 10
x

4. f (x) = 4x2

4x2+1
5. f (x) = 2x

x2−9

6. f (x) = 3x2

x2−4
7. f (x) = 1

x2+4x+3
8. f (x) = 2x+5

x2−2x−8

Graph the following rational functions. Draw dashed vertical and horizontal lines on the graph to denote asymptotes.

9. f (x) = 2
x−3

10. f (x) = 3
x2

11. f (x) = x
x−1

12. f (x) = 2x
x+1

13. f (x) = −1
x2+2

14. f (x) = x
x2+9

15. f (x) = x2

x2+1

16. f (x) = 1
x2−1

17. f (x) = 2x
x2−9

18. f (x) = x2

x2−16

19. f (x) = 3
x2−4x+4

20. f (x) = x
x2−x−6

Find the quantity labeled x in the following circuit.

21.

FIGURE 2.2

22.

23.
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FIGURE 2.3

FIGURE 2.4

Review Answers

1. vertical x =−2; horizontal y = 0
2. vertical x = 3; horizontal y = 5

2
3. vertical x = 0; horizontal y = 0
4. no vertical; horizontal y = 1
5. vertical x = 3,x =−3; horizontal y = 0
6. vertical x = 2,x =−2; horizontal y = 3
7. vertical x =−1,x =−3; horizontal y = 0
8. vertical x = 4,x =−2; horizontal y = 0
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9.

10.

11.

12.
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13.

14.

15.

16.
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17.

18.

19.

20.
21. 18 V
22. 12.5 ohms
23. 2.5 Amperes
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2.3 Rational Expressions

Learning Objectives

• Simplify rational expressions.
• Find excluded values of rational expressions.
• Simplify rational models of real-world situations.

Introduction

A rational expression is reduced to lowest terms by factoring the numerator and denominator completely and divide
out common factors. For example, the expression

x ·�z1

y ·�z1
=

x
y

simplifies to simplest form by dividing out the common factor z.

Simplify Rational Expressions.

To simplify rational expressions means that the numerator and denominator of the rational expression have no
common factors. In order to simplify to lowest terms, we factor the numerator and denominator as much as we
can and divide out common factors from the numerator and the denominator of the fraction.

Example 1

Simplify each rational expression.

a) 4x−2
2x2+x−1

b) x2−2x+1
8x−8

c) x2−4
x2−5x+6

Solution

a) Factor the numerator and denominator completely. 2(2x−1)
(2x−1)(x+1)

Divide the common term (2x−1). Answer 2
x+1

b) Factor the numerator and denominator completely. (x−1)(x−1)
8(x−1)

Divide the common term (x−1). Answer x−1
8

c) Factor the numerator and denominator completely. (x−2)(x+2)
(x−2)(x−3)

Divide the common term (x−2). Answer x+2
x−3

Common mistakes in simplifying rational expressions:

When simplify rational expressions, you are only allowed to divide out common factors from the denominator but
NOT common terms. For example, in the expression
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(x+1).(x−3)
(x+2).(x−3)

we can cross out the (x−3) factor because (x−3)
(x−3) = 1.

We write

(x+1) · (���x−3)1

(x+2) · (���x−3)1
=

(x+1)
(x+2)

However, don’t make the mistake of dividing out common terms in the numerator and denominator. For instance,
in the expression.

x2 +1
x2−5

we cannot cross out the x2 terms.

x2 +1
x2−5

6=�
�x2 +1

��x2−5

When we cross out terms that are part of a sum or a difference we are violating the order of operations (PEMDAS).
We must remember that the fraction sign means division. When we perform the operation

(x2 +1)
(x2−5)

we are dividing the numerator by the denominator

(x2 +1)÷ (x2−5)

The order of operations says that we must perform the operations inside the parenthesis before we can perform the
division.

Try this with numbers:

9+1
9−5

=
10
4

= 2.5 But if we divide incorrectly we obtain the following �9+1
�9−5

=−1
5
=−0.2.

CORRECT INCORRECT

Find Excluded Values of Rational Expressions

Whenever a variable expression is present in the denominator of a fraction, we must be aware of the possibility that
the denominator could be zero. Since division by zero is undefined, certain values of the variable must be excluded.
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These values are the vertical asymptotes (i.e. values that cannot exist for x). For example, in the expression
( 2

x−3

)
,

the value of x = 3 must be excluded.

To find the excluded values we simply set the denominator equal to zero and solve the resulting equation.

Example 2

Find the excluded values of the following expressions.

a) x
x+4

b) 2x+1
x2−x−6

c) 4
x2−5x

Solution

a) When we set the denominator equal to zero we obtain. x+4 = 0⇒ x =−4 is the excluded value.

b) When we set the denominator equal to zero we obtain. x2− x−6 = 0

Solve by factoring. (x−3)(x+2) = 0

⇒ x = 3 and x =−2 are the excluded values.

c) When we set the denominator equal to zero we obtain. x2−5x = 0

Solve by factoring. x(x−5) = 0

⇒ x = 0 and x = 5 are the excluded values.

Removable Zeros

Notice that in the expressions in Example 1, we removed a division by zero when we simplified the problem. For
instance,

4x−2
2x2 + x−1

was rewritten as

2(2x−1)
(2x−1)(x+1)

.

This expression experiences division by zero when x = 1
2 and x =−1.

However, when we divide out common factors, we simplify the expression to 2
x+1 . The reduced form allows the

value x = 1
2 . We thus removed a division by zero and the reduced expression has only x =−1 as the excluded value.

Technically the original expression and the simplified expression are not the same. When we simplify to simplest
form we should specify the removed excluded value. Thus,

4x−2
2x2 + x−1

=
2

x+1
,x 6= 1

2

The expression from Example 1, part b simplifies to

x2−2x+1
8x−8

=
x−1

8
,x 6= 1
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The expression from Example 1, part c simplifies to

x2−4
x2−5x+6

=
x+2
x−3

,x 6= 2

Simplify Rational Models of Real-World Situations

Many real world situations involve expressions that contain rational coefficients or expressions where the variable
appears in the denominator.

Example 3

The gravitational force between two objects in given by the formula F = G m1m2
d2 . if the gravitation constant is given

by G ≈ 6.67× 10−11 (N ·m2/kg2). The force of attraction between the Earth and the Moon is F = 2.0× 1020 N
(with masses of m1 = 5.97×1024 kg for the Earth and m2 = 7.36×1022 kg for the Moon).

What is the distance between the Earth and the Moon?

Solution

Lets start with the Law of Gravitation formula. F = G
m1m2

d2

Now plug in the known values. 2.0×1020N = 6.67×10−11 N ·m2

kg2 .
(5.97×1024kg)(7.36×1022kg)

d2

Multiply the masses together. 2.0×1020N = 6.67×10−11 N ·m2

kg2 .
4.39×1047kg2

d2

Divide out the kg2 units. 2 ·0×1020N = 6.67×10−11 N ·m2

�
�kg2 ·

4.39×1047
�
�kg2

d2

Multiply the numbers in the numerator. 2.0×1020N =
2.93×1037

d2 N ·m2

Multiply both sides by d2. 2.0×1020N ·d2 =
2.93×1037

d2 ·d2 ·N ·m2

Divide out common factors. 2 ·0×1020N ·d2 =
2.93×1037

��d2
·��d2 ·N ·m2

Simplify. 2.0×1020N ·d2 = 2.93×1037N ·m2

Divide both sides by 2.0×1020 N. d2 =
2.93×1037

2.0×1020
N ·m2

N
Simplify. d2 = 1.465×1017m2

Take the square root of both sides. d = 3.84×108m

Answer The distance is 3.84×108m.

This is indeed the distance between the Earth and the Moon.

Example 4

The area of a circle is given by A = πr2 and the circumference of a circle is given by C = 2πr. Find the ratio of the
circumference and area of the circle.

Solution

The ratio of the circumference and area of the circle is: 2πr
πr2
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We divide out common factors from the numerator and denominator. 2�π
1
�r

1

�π
1
��r2

r

Simplify.

Answer 2
r

Example 5

The height of a cylinder is 2 units more than its radius. Find the ratio of the surface area of the cylinder to its volume.

Solution

Define variables.

Let R = the radius of the base of the cylinder.

Then, R+2 = the height of the cylinder

To find the surface area of a cylinder, we need to add the areas of the top and bottom circle and the area of the curved
surface.

The volume of a cylinder is the area of the base of the cylinder times its height, so:

The volume of the cylinder is V = πR2(R+2)

The ratio of the surface area of the cylinder to its volume is
2πR2 +2πR(R+2)

πR2(R+2)

Distribute to eliminate the parentheses in the numerator.
2πR2 +2πR2 +4πR

πR2(R+2)

Combine like terms in the numerator.
4πR2 +4πR
πR2(R+2)

Factor common terms in the numerator.
4πR(R+1)
πR2(R+2)

Divide out common terms in the numerator and denominator.
4�π1
�R

1(R+1)

�π1��R2
R(R+2)

Simplify.
4(R+1)
R(R+2)

Answer
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Review Questions

Simplify each rational expression to lowest terms.

1. 4
2x−8

2. x2+2x
x

3. 9x+3
12x+4

4. 6x2+2x
4x

5. x−2
x2−4x+4

6. x2−9
5x+15

7. x2+6x+8
x2+4x

8. 2x2+10x
x2+10x+25

9. x2+6x+5
x2−x−2

10. x2−16
x2+2x−8

11. 3x2+3x−18
2x2+5x−3

12. x3+x2−20x
6x2+6x−120

Find the excluded values for each rational expression.

13. 2
x

14. 4
x+2

15. 2x−1
(x−1)2

16. 3x+1
x2−4

17. x2

x2+9

18. 2x2+3x−1
x2−3x−28

19. 5x3−4
x2+3x

20. 9
x3+11x2+30x

21. 4x−1
x2+3x−5

22. 5x+11
3x2−2x−4

23. x2−1
2x2+x+3

24. 12
x2+6x+1

25. Suppose that two objects attract each other with a gravitational force of 20 Newtons. If the distance between
the two objects is doubled, what is the new force of attraction between the two objects?

26. Suppose that two objects attract each other with a gravitational force of 36 Newtons. If the mass of both
objects was doubled, and if the distance between the objects was doubled, then what would be the new force
of attraction between the two objects?

27. A sphere with radius r has a volume of 4
3 πr3 and a surface area of 4πr2. Find the ratio the surface area to the

volume of a sphere.
28. The side of a cube is increased by a factor of two. Find the ratio of the old volume to the new volume.
29. The radius of a sphere is decreased by four units. Find the ratio of the old volume to the new volume.

Review Answers

1. 2
x−4

2. x+2,x 6= 0
3. 3

4 ,x 6=−
1
3

4. 3x+1
2 ,x 6= 0
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5. 1
x−2

6. x−3
5 ,x 6=−3

7. x+2
x ,x 6=−4

8. 2x
x+5

9. x+5
x−2 ,x 6=−1

10. x−4
x−2 ,x 6=−4

11. 3x−6
2x−1 ,x 6=−3

12. x
6 ,x 6=−5,x 6= 4

13. x = 0
14. x =−2
15. x = 1
16. x = 2,x =−2
17. none
18. x =−4,x = 7
19. x = 0,x =−3
20. x = 0,x =−5,x =−6
21. x≈ 1.19,x≈−4.19
22. x≈ 1.54,x≈−0.87
23. none
24. x≈−0.17,x≈−5.83
25. 5 Newtons
26. 36 Newtons
27. 3

r
28. 1

8

29. r3

(r−4)3
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2.4 Multiplication and Division of Rational Ex-
pressions

Learning Objectives

• Multiply rational expressions involving monomials.
• Multiply rational expressions involving polynomials.
• Multiply a rational expression by a polynomial.
• Divide rational expressions involving polynomials.
• Divide a rational expression by a polynomial.
• Solve real-world problems involving multiplication and division of rational expressions.

Introduction

The rules for multiplying and dividing rational expressions are the same as the rules for multiplying and dividing
rational numbers. Lets start by reviewing multiplication and division of fractions. When we multiply two fractions
we multiply the numerators and denominators separately:

a
b
· c

d
=

a · c
b ·d

When we divide two fractions we first change the operation to multiplication. Remember that division is the inverse
operation of multiplication, or you can think that division is the same as multiplication by the reciprocal of the
number.

a
b
÷ c

d
=

a
b
· d

c

The problem is completed by multiplying the numerators and denominators separately a·d
b·c .

Multiply Rational Expressions Involving Monomials

Example 1

Multiply 4
5 ·

15
8 .

Solution

We follow the multiplication rule and multiply the numerators and the denominators separately.

4
5
· 15

8
=

4 ·15
5 ·8

=
60
40

Notice that the answer is not in simplest form. We can divide out a common factor of 20 from the numerator and
denominator of the answer.
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60
40

=
3
2

We could have obtained the same answer a different way: by dividing out common factors before multiplying.

4
5
· 15

8
=

4 ·15
5 ·8

We can divide out a factor of 4 from the numerator and denominator:

4
5
· 15

8
=
�4

1 ·15
5 · �82

We can also divide out a factor of 5 from the numerator and denominator:

1
5
· 15

2
=

1 ·��153

�51 ·2
=

1 ·3
1 ·2

=
3
2

Answer: The final answer is 3
2 , no matter which you you go to arrive at it.

Multiplying rational expressions follows the same procedure.

• Divide out common factors from the numerators and denominators of the fractions.
• Multiply the leftover factors in the numerator and denominator.

Example 2

Multiply the following a
16b8 · 4b3

5a2 .

Solution

Divide out common factors from the numerator and denominator.

�a
1

��164 ·��b8
b5

· �4
1 ·��b31

5 ·��a2
a

When we multiply the left-over factors, we get

1
20ab5 Answer

Example 3

Multiply 9x2 · 4y2

21x4 .

Solution

Rewrite the problem as a product of two fractions.
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9x2

1
· 4y2

21x4

Divide out common factors from the numerator and denominator

�9
3
��x21

1
· 4y2

��217��x4
x2

We multiply the left-over factors and get

12y2

7x2 Answer

Multiply Rational Expressions Involving Polynomials

When multiplying rational expressions involving polynomials, the first step involves factoring all polynomials
expressions as much as we can. We then follow the same procedure as before.

Example 4

Multiply 4x+12
3x2 · x

x2−9 .

Solution

Factor all polynomial expressions where possible.

4(x+3)
3x2 · x

(x+3)(x−3)

Divide out common factors in the numerator and denominator of the fractions:

4����(x+3)1

3��x2
x
· �x

1

���
�(x+3)1(x−3)

The simplifed product in factored form is:

4
3x(x−3)

(Optional) Multiply the left-over factors.

4
3x(x−3)

=
4

3x2−9x
Answer

Example 5

Multiply 12x2−x−6
x2−1 · x2+7x+6

4x2−27x+18 .
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Solution

Factor all polynomial expression where possible.

(3x+2)(4x−3)
(x+1)(x−1)

· (x+1)(x+6)
(4x−3)(x−6)

Divide out common factors in the numerator and denominator of the fractions.

(3x+2)���
�(4x−3)1

��
��(x+1)1(x−1)

· �
���(x+1)1(x+6)

���
�(4x−3)1(x−6)

The simplifed product in factored form is:

(3x+2)(x+6)
(x−1)(x−6)

(Optional) Multiply the remaining factors.

(3x+2)(x+6)
(x−1)(x−6)

=
3x2 +20x+12

x2−7x+6
Answer

Multiply a Rational Expression by a Polynomial

When we multiply a rational expression by a whole number or a polynomial, we must remember that we can write
the whole number (or polynomial) as a fraction with denominator equal to one. We then proceed the same way as in
the previous examples.

Example 6

Multiply 3x+18
4x2+19x−5 · (x

2 +3x−10).

Solution

Rewrite the expression as a product of fractions.

3x+18
4x2 +19x−5

· x
2 +3x−10

1

Factor all polynomials possible and cancel common factors.

3(x+6)
���

�(x+5)1(4x−1)
· (x−2)����(x+5)1

1

The simplified product in factored form is:

3(x+6)(x−2)
(4x−1)
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(Optional) Multiply the remaining factors.

(3x+18)(x−2)
4x−1

=
3x2 +12x−36

4x−1

Divide Rational Expressions Involving Polynomials

Since division is the reciprocal of the multiplication operation, we first rewrite the division problem as a multiplica-
tion problem and then proceed with the multiplication as outlined in the previous example.

Note: Remember that a
b ÷

c
d = a

b ·
d
c . The first fraction remains the same and you take the reciprical of the second

fraction. Do not fall in the common trap of flipping the first fraction.

Example 7

Divide 4x2

15 ÷
6x
5 .

Solution

First convert the division problem into a multiplication problem by flipping what we are dividing by and then simplify
as usual.

4x2

15
÷ 6x

5
=
�4

2
��x2x

��153
· �5

1

�63�x1
=

2 · x ·1
3 ·3 ·1

=
2x
9

Example 8

Divide 3x2−15x
2x2+3x−14 ÷

x2−25
2x2+13x+21 .

Solution

First convert into a multiplication problem by flipping what we are dividing by and then simplify as usual.

3x2−15x
2x2 +3x−14

· 2x2 +13x+21
x2−25

Factor all polynomials and divide out common factors.

3x����(x−5)1

���
�(2x+7)1(x+3)

·�
���(2x+7)1(x−2)
���

�(x−5)1(x+5)

The simplified product in factored form is:

3x(x+3)
(x−2)(x+5)

(Optional) Multiply the factors.

3x(x+3)
(x−2)(x+5)

=
3x2 +9x

x2 +3x−10
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Divide a Rational Expression by a Polynomial

When we divide a rational expression by a whole number or a polynomial, we must remember that we can write the
whole number (or polynomial) as a fraction with denominator equal to one. We then proceed the same way as in the
previous examples.

Example 9

Divide 9x2−4
2x−2 ÷ (21x2−2x−8).

Solution

Rewrite the expression as a division of fractions.

9x2−4
2x−2

÷ 21x2−2x−8
1

Convert into a multiplication problem by taking the reciprocal of the divisor (i.e. what we are dividing by).

9x2−4
2x−2

· 1
21x2−2x−8

Factor all polynomials and divide out common factors.

���
�(3x−2)1(3x+2)

2(x−1)
· 1

���
�(3x−2)1(7x+4)

The simplified quotient in factored for is:

3x2

2(x−1)

(Optional) Multiply the remaining factors.

3x+2
14x2−6x−8

.

Solve Real-World Problems Involving Multiplication and Division of Rational Expressions

Example 10

Suppose Marciel is training for a running race. Marciel’s speed (in miles per hour) of his training run each morning
is given by the function 0.1(x3− 9x), where x is the number of bowls of cereal he had for breakfast (4 ≤ x ≤ 6).
Marciels training distance (in miles), if he eats x bowls of cereal, is 0.1(3x2−9x). What is the function for Marciel’s
time and how long does it take Marciel to do his training run if he eats five bowls of cereal on Tuesday morning?

Solution
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time =
distance

speed

time =
3x2−9x
x3−9x

=
0.3x(x−3)
0.1x(x2−9)

=
0.3�x

1
���

�(x−3)
0.1�x1(x+3)����(x−3)

time =
3

x+3

If x = 5, then

time =
3

5+3
=

3
8

Answer Marciel will run for 3
8 of an hour.

Review Questions

Perform the indicated operation and reduce the answer to lowest terms

1. x3

2y3 · 2y2

x

2. 2xy÷ 2x2

y

3. 2x
y2 · 4y

5x

4. 2xy · 2y2

x3

5. 4y2−1
y2−9 ·

y−3
2y−1

6. 6ab
a2 · a3b

3b2

7. x2

x−1 ÷
x

x2+x−2

8. 33a2

−5 ·
20

11a3

9. a2+2ab+b2

ab2−a2b ÷ (a+b)

10. 2x2+2x−24
x2+3x · x2+x−6

x+4

11. 3−x
3x−5 ÷

x2−9
2x2−8x−10

12. x2−25
x+3 ÷ (x−5)

13. 2x+1
2x−1 ÷

4x2−1
1−2x

14. x
x−5 ·

x2−8x+15
x2−3x

15. 3x2+5x−12
x2−9 ÷ 3x−4

3x+4

16. 5x2+16x+3
36x2−25 · (6x2 +5x)

17. x2+7x+10
x2−9 · x2+3x

3x2+4x−4

18. x2+x−12
x2+4x+4 ÷

x−3
x+2

19. x4−16
x2−9 ÷

x+4
x−3

20. x2+8x+16
7x2+9x+2 ·

7x+2
x2+4x

21. Marias recipe asks for 2 1
2 times more flour than sugar. How many cups of flour should she mix in if she uses

3 1
3 cups of sugar?

22. George drives from San Diego to Los Angeles. On the return trip, he increases his driving speed by 15 miles
per hour. In terms of his initial speed, by what factor is the driving speed decreased on the return trip?
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23. Ohm’s Law states that in an electrical circuit I = V
Rtot

. The total resistance for resistors placed in parallel is
given by 1

Rtot
= 1

R1
+ 1

R2
. Write the formula for the electric current in term of the component resistances: R1

and R2.

Review Answers

1. x2

y

2. y2

x
3. 8

5y

4. 4y3

x2

5. 2y+1
y+3

6. 2a2

7. x2 +2x
8. −12

a
9. a+b

ab2−a2b

10. 2(x−2)(x−3)
x or 2x2−10x+12

x

11. −2(x+1)(x−5)
(x+3)(3x−5) or −2x2+8x+10

3x2+4x−15

12. x+5
x+3

13. 1
1−2x

14. 1
15. 3x+4

x−3

16. x(x+3)(5x+1)
6x−5 or 5x3+16x2+3x

6x−5

17. x(x+5)
(x−3)(3x−2) or x2+5x

3x2−11x+6

18. x+4
x+2

19. x−4
x+3

20. x+4
x(x+1) or x+4

x2+x

21. 8 1
3 cups

22. s
s+15

23. I = V
R1

+ V
R2
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2.5 Addition and Subtraction of Rational Ex-
pressions

Learning Objectives

• Add and subtract rational expressions with the same denominator.
• Find the least common denominator of rational expressions.
• Add and subtract rational expressions with different denominators.
• Solve real-world problems involving addition and subtraction of rational expressions.

Introduction

Like fractions, rational expressions represent a portion of a quantity. Remember that when we add or subtract frac-
tions we must first make sure that they have the same denominator. Once the fractions have the same denominator,
we combine the different portions by adding or subtracting the numerators and writing that answer over the common
denominator.

Add and Subtract Rational Expressions with the Same Denominator

Fractions with common denominators combine in the following manner.

a
c
+

b
c
=

a+b
c

and
a
c
− b

c
=

a−b
c

Example 1

Simplify.

a) 8
7 −

2
7 +

4
7

b) 4x2−3
x+5 + 2x2−1

x+5

c) x2−2x+1
2x+3 −

3x2−3x+5
2x+3

Solution

a) Since the denominators are the same we combine the numerators.

8
7
− 2

7
+

4
7
=

8−2+4
7

=
10
7

Answer

b) Since the denominators are the same we combine the numerators.

4x2−3+2x2−1
x+5

Simplify by collecting like terms.
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6x2−4
x+5

Answer

c) Since the denominators are the same we combine the numerators. Make sure the subtraction sign is distributed to
all terms in the second expression.

(x2−2x+1)− (3x2−3x+5)
2x+3

=
x2−2x+1−3x2 +3x−5

2x+3

=
−2x2 + x−4

2x+3
Answer

Find the Least common Denominator of Rational Expressions

To add and subtract fractions with different denominators, we must first rewrite all fractions so that they have
the same denominator. In general, we want to find the least common denominator. To find the least common
denominator, we find the least common multiple (LCM) of the expressions in the denominators of the different
fractions. Remember that the least common multiple of two or more integers is the least positive integer having each
as a factor.

Consider the integers 234, 126 and 273.

To find the least common multiple of these numbers we write each integer as a product of its prime factors.

Here we present a systematic way to find the prime factorization of a number.

• Try the prime numbers, in order, as factors.
• Use repeatedly until it is no longer a factor.
• Then try the next prime:

234 = 2 ·117

= 2 ·3 ·39

= 2 ·3 ·3 ·13

234 = 2 ·32 ·13

126 = 2 ·63

= 2 ·3 ·21

= 2 ·3 ·3 ·7
126 = 2 ·32 ·7

273 = 3 ·91

= 3 ·7 ·13
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Once we have the prime factorization of each number, the least common multiple of the numbers is the product of
all the different factors taken to the highest power that they appear in any of the prime factorizations. In this case,
the factor of two appears at most once, the factor of three appears at most twice, the factor of seven appears at most
once, the factor of 13 appears at most once. Therefore,

LCM = 2 ·32 ·7 ·13 = 1638 Answer

If we have integers that have no common factors, the least common multiple is just the product of the integers.
Consider the integers 12 and 25.

12 = 22 ·3 and 25 = 52

The LCM = 22 ·3 ·52 = 300, which is just the product of 12 and 25.

The procedure for finding the least common multiple of polynomials is similar. We rewrite each polynomial in
factored form and we form the LCM by taken each factor to the highest power it appears in any of the separate
expressions.

Example 2

Find the LCM of 48x2y and 60xy3z.

Solution

First rewrite the integers in their prime factorization.

48 = 24 ·3
60 = 22 ·3 ·5

Therefore, the two expressions can be written as

48x2y = 24 ·3 · x2 · y
60xy3z = 22 ·3 ·5 · x · y3 · z

The LCM is found by taking each factor to the highest power that it appears in either expression.

LCM = 24 ·3 ·5 · x2 · y3 · z = 240x2y3z.

Example 3

Find the LCM of 2x2 +8x+8 and x3−4x2−12x.

Solution

Factor the polynomials completely.

2x2 +8x+8 = 2(x2 +4x+4) = 2(x+2)2

x3−4x2−12x = x(x2−4x−12) = x(x−6)(x+2)
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The LCM is found by taking each factor to the highest power that it appears in either expression.

LCM = 2x(x+2)2(x−6) Answer

It is customary to leave the LCM in factored form because this form is useful in simplifying rational expressions and
finding any excluded values.

Example 4

Find the LCM of x2−25 and x2 +3x+2.

Solution

Factor the polynomials completely:

x2−25 = (x+5)(x−5)

x2 +3x+2 = (x+2)(x+1)

Since the two expressions have no common factors, the LCM is just the product of the two expressions.

LCM = (x+5)(x−5)(x+2)(x+1) Answer

Add and Subtract Rational Expressions with Different Denominators

Now we are ready to add and subtract rational expressions. We use the following procedure.

1. Find the least common denominator (LCD) of the fractions.
2. Express each fraction as an equivalent fraction with the LCD as the denominator.
3. Add or subtract and simplify the result.

Example 5

Add 4
12 +

5
18 .

Solution

We can write the denominators in their prime factorization 12= 22 ·3 and 18= 2 ·32. The least common denominator
of the fractions is the LCM of the two numbers: 22 ·32 = 36. Now we need to rewrite each fraction as an equivalent
fraction with the LCD as the denominator.

For the first fraction. 12 needs to be multiplied by a factor of 3 in order to change it into the LCD, so we multiply
the numerator and the denominator by 3.

4
12
· 3

3
=

12
36

For the section fraction. 18 needs to be multiplied by a factor of 2 in order to change it into the LCD, so we
multiply the numerator and the denominator by 2.

5
18
· 2

2
=

10
36
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Once the denominators of the two fractions are the same we can add the numerators.

12
36

+
10
36

=
22
36

The answer can be simplifed by dividing out a common factor of 2.

12
36

+
10
36

=
22
36

=
11
18

Answer

Example 6

Perform the following operation and simplify.

2
x+2

− 3
2x−5

Solution

The denominators cannot be factored any further, so the LCD is just the product of the separate denominators.

LCD = (x+2)(2x−5)

The first fraction needs to be multiplied by the factor (2x−5) and the second fraction needs to be multiplied by the
factor (x+2).

2
x+2

· (2x−5)
(2x−5)

− 3
2x−5

· (x+2)
(x+2)

We combine the numerators and simplify.

2(2x−5)−3(x+2)
(x+2)(2x−5)

=
4x−10−3x−6
(x+2)(2x−5)

Combine like terms in the numerator.

x−16
(x+2)(2x−5)

Answer

Example 8

Perform the following operation and simplify.

4x
x−5

− 3x
5− x
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Solution

Notice that the denominators are almost the same. They differ by a factor of -1.

Factor a −1 from the terms in the second denominator.

4x
x−5

− 3x
−(x−5)

Notice we are now subtracting a negative. Remember subtracting a negative is equivalent to adding a positive. In
general, a− (−b) = a+b. We can write the difference as an equilavent sum.

4x
x−5

+
3x

(x−5)

Since the denominators are the same we combine the numerators.

4x+3x
(x−5)

=
7x

x−5
Answer

Example 9

Perform the following operation and simplify.

2x−1
x2−6x+9

− 3x+4
x2−9

Solution

We factor the denominators.

2x−1
(x−3)2 −

3x+4
(x+3)(x−3)

The LCD is the product of all the different factors taken to the highest power they have in either denominator.
LCD = (x−3)2(x+3).

The first fraction needs to be multiplied by a factor of (x+ 3) and the second fraction needs to be multiplied by a
factor of (x−3).

2x−1
(x−3)2 ·

(x+3)
(x+3)

− 3x+4
(x+3)(x−3)

· (x−3)
(x−3)

Combine the numerators.

(2x−1)(x+3)− (3x+4)(x−3)
(x−3)2(x+3)

Eliminate all parentheses in the numerator.
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(2x2 +5x)−3− (3x2−5x−12)
(x−3)2(x+3)

Distribute the negative sign in the second parenthesis.

2x2 +5x−3−3x2 +5x+12
(x−3)2(x+3)

Combine like terms in the numerator.

−x2 +10x+9
(x−3)2(x+3)

Answer

Solve Real-World Problems Involving Addition and Subtraction of Rational Expressions

Example 10

In an electrical circuit with two resistors placed in parallel, the reciprocal of the total resistance is equal to the sum
of the reciprocals of each resistance 1

Rtot
= 1

R1
+ 1

R2
. Find an expression for the total resistance in a circuit with two

resistors wired in parallel.

Solution

The equation for the relationship between total resistance and resistances placed in parallel says that the reciprocal
of the total resistance is the sum of the reciprocals of the individual resistances.

Lets simplify the expression 1
R1

+ 1
R2

.

The lowest common denominator is

= R1R2

Multiply the first fraction by R2
R2

and the second fraction by R1
R1

.

R2

R2
· 1

R1
+

R1

R1
· 1

R2

Simplify.

R2 +R1

R1R2

So we have:

1
R tot

=
R1 +R2

R1R2
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Therefore, the total resistance is the reciprocal of this expression.

Rtot =
R1R2

R1 +R2
Answer

Number Problems

These problems express the relationship between two numbers.

Example 11

The sum of a number and its reciprocal is 53
14 . Find the numbers.

Solution

1. Define variables.

Let x = a number

Then, 1
x is the reciprocal of the number

2. Set up an equation.

The equation that describes the relationship between the numbers is:

x+
1
x
=

53
14

3. Solve the equation.

Multiply the first term by x
x . The second term already has a denominator of x and requires no additional multiplica-

tion. We get:

x
x
· x+ 1

x
=

53
14

Simplify the expression on the left side of the equation.

x2 +1
x

=
53
14

Because the rational expressions are equal, they are proportional. Therefore, we can cross multiply to form an
equivalent equation.

14(x2 +1) = 53x

Simplify.

14x2 +14 = 53x

Write all terms on one side of the equation.
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14x2−53x+14 = 0

Factor.

(7x−2)(2x−7) = 0

x =
2
7

and x =
7
2

Notice there are two answers for x, but they are really the same. One answer represents the number and the other
answer represents its reciprocal.

4. Check. 2
7 +

7
2 = 4+49

14 = 53
14 . The answer checks out.

Work Problems

These are problems where two people or two machines work together to complete a job. Work problems often
contain rational expressions. Typically we set up such problems by looking at the part of the task completed by each
person or machine. The completed task is the sum of the parts of the tasks completed by each individual or each
machine.

Part of task completed by first person + Part of task completed by second person = One completed task

To determine the part of the task completed by each person or machine we use the following fact.

Part of the task completed = rate of work time spent on the task

In general, it is very useful to set up a table where we can list all the known and unknown variables for each person
or machine and then combine the parts of the task completed by each person or machine at the end.

Example 12

Mary can paint a house by herself in 12 hours. John can paint a house by himself in 16 hours. How long would it
take them to paint the house if they worked together?

Solution:

1. Define variables.

Let t = the time it takes Mary and John to paint the house together.

2. Construct a table.

Since Mary takes 12 hours to paint the house by herself, in one hour she paints 1
12 of the house.

Since John takes 16 hours to pain the house by himself, in one hour he paints 1
16 of the house.

Mary and John work together for t hours to paint the house together. Using,

Part of the task completed = rate of work • time spent on the task times the amount of time spend on the task.

we can write that Mary completed t
12 of the house and John completed t

16 of the house in this time.

This information is nicely summarized in the table below:

TABLE 2.7:

Painter Rate of work (per hour) Time worked Part of Task
Mary 1

12 t t
12

John 1
16 t 1

16
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3. Set up an equation.

Since Mary completed t
12 of the house and John completed t

16 and together they paint the whole house in t hours,
we can write the equation

t
12

+
t

16
= 1.

4. Solve the equation.

Find the lowest common denominator of the expression on the left side of the equation.

LCD = 48

Multiply all terms in the equation by the LCM.

48 · t
12

+48 · t
16

= 48 ·1

Cancel common factors in each term.

��484.
t
��12

+��48.3.
t
��16

= 48.1

Simplify.

4t +3t = 48

7t = 48

t =
48
7

t ≈ 6.86 hours

Check

The answer is reasonable. We expect the job to take more than half the time Mary takes but less than half the time
John takes since Mary works faster than John.

Example 12

Suzie and Mike take two hours to mow a lawn when they work together. It takes Suzie 3.5 hours to mow the same
lawn if she works by herself. How long would it take Mike to mow the same lawn if he worked alone?

Solution

1. Define variables.

Let t = the time it takes Mike to mow the lawn by himself.

2. Construct a table.
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TABLE 2.8:

Painter Rate of Work (per Hour) Time Worked Part of Task
Suzie 1

3.5 = 2
7 2 4

7
Mike 1

t 2 2
t

3. Set up an equation.

Since Suzie completed 4
7 of the lawn and Mike completed 2

t of the lawn and together they mow the lawn in 2 hours,
we can write the equation: 4

7 +
2
t = 1.

4. Solve the equation.

Find the lowest common denominator.

LCM = 7t

Multiply all terms in the equation by the LCM.

7t · 4
7
+7t · 2

t
= 7t ·1

Cancel common factors in each term.

�7t.
4
�7
+ �7t.

2

�t
= 7t.1

Simplify.

4t +14 = 7t

3t = 14⇒ t =
14
3

= 4
2
3

hours Answer

Check.

The answer is reasonable. We expect Mike to work slower than Suzie because working by herself it takes her less
than twice the time it takes them to work together.

Review Questions

Perform the indicated operation and simplify. Leave the denominator in factored form.

1. 5
24 −

7
24

2. 10
21 +

9
35

3. 5
2x+3 +

3
2x+3

4. 3x−1
x+9 −

4x+3
x+9

5. 4x+7
2x2 − 3x−4

2x2

6. x2

x+5 −
25

x+5
7. 2x

x−4 +
x

4−x
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8. 10
3x−1 −

7
1−3x

9. 5
2x+3 −3

10. 5x+1
x+4 +2

11. 1
x +

2
3x

12. 4
5x2 − 2

7x3

13. 4x
x+1 −

2
2(x+1)

14. 10
x+5 +

2
x+2

15. 2x
x−3 −

3x
x+4

16. 4x−3
2x+1 +

x+2
x−9

17. x2

x+4 −
3x2

4x−1
18. 2

5x+2 −
x+1
x2

19. x+4
2x + 2

9x
20. 5x+3

x2+x +
2x+1

x
21. 4

(x+1)(x−1) −
5

(x+1)(x+2)

22. 2x
(x+2)(3x−4) +

7x
(3x−4)2

23. 3x+5
x(x−1) −

9x−1
(x−1)2

24. 1
(x−2)(x−3) +

4
(2x+5)(x−6)

25. 3x−2
x−2 + 1

x2−4x+4

26. −x2

x2−7x+6 + x−4
27. 2x

x2+10x+25 −
3x

2x2+7x−15
28. 1

x2−9 +
2

x2+5x+6
29. −x+4

2x2−x−15 +
x

4x2+8x−5
30. 4

9x2−49 −
1

3x2+5x−28
31. One number is 5 less than another. The sum of their reciprocals is 13

36 . Find the two numbers.
32. One number is 8 times more than another. The difference in their reciprocals is 21

20 . Find the two numbers.
33. A pipe can fill a tank full of oil in 4 hours and another pipe can empty the tank in 8 hours. If the valves to both

pipes are open, how long would it take to fill the tank?
34. Stefan could wash the cars by himself in 6 hours and Misha could wash the cars by himself in 5 hours. Stefan

starts washing the cars by himself, but he needs to go to his football game after 2.5 hours. Misha continues
the task. How long did it take Misha to finish washing the cars?

35. Amanda and her sister Chyna are shoveling snow to clear their driveway. Amanda can clear the snow by
herself in three hours and Chyna can clear the snow by herself in four hours. After Amanda has been working
by herself for one hour, Chyna joins her and they finish the job together. How long does it take to clear the
snow from the driveway?

36. At a soda bottling plant one bottling machine can fulfill the daily quota in 10 hours, and a second machine
can fill the daily quota in 14 hours. The two machines start working together but after four hours the slower
machine broke and the faster machine had to complete the job by itself. How many hours does the fast machine
works by itself?

Review Answers

1. − 1
12

2. 11
15

3. 8
2x+3

4. −x−4
x+9

5. x+11
2x2

6. x−5
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7. x
x−4

8. 17
3x−1

9. −6x−4
2x+3

10. 7x+9
x+4

11. 5
3x

12. 28x−10
35x3

13. 4x−1
x+1

14. 12x+30
(x+5)(x+2)

15. −x2+17x
(x−3)(x+4)

16. 6x2−34x+19
(2x+1)(x−9)

17. x3−13x2

(x+4)(4x−1)

18. −3x2+7x+2
x2(5x+2)

19. 9x+40
18x

20. 2x2+8x+4
x(x+1)

21. −x+13
(x+1)(x−1)(x+2)

22. 13x2+6x
(x+2)(3x−4)2

23. −6x2+3x−5
x(x−1)2

24. 6x2−27x−6
(x−2)(x−3)(2x+5)(x−6)

25. 3x2−8x+5
(x−2)2

26. x3−12x2−34x−24
(x−6)(x−1)

27. x2−21x
(2x−3)(x+5)2

28. 3x−4
(x−3)(x+3)(x+2)

29. −x2+6x−4
(2x+5)(x−3)(2x−1)

30. x+9
(3x+7)(3x−7)(x+4)

31. The numbers are 4 and 9 or the numbers are −45
13 and 20

13 .
32. The numbers are 5

6 and 20
3

33. 8 hours (Hint: How might we indciate one pipe filling the tank while the other is draining the tank? What
might t

4 −
t
8 = 1 mean?)

34. 2 hours and 55 minutes or 2 11
12 hours that Misha worked alone to finish washing cars. (Hint: What portion

of the job did Stefan complete before leaving? What might t
5 = 1− 2.5

6 mean?)
35. 1 1

7 hours, which is approximately 1 hour and 9 minutes. (Hint: What portion of the job did Amanda complete
by herself? What might t

3 +
t
4 = 1− 1

3 mean?)
36. 3 1

7 hours, which is approximately 3 hours and 9 minutes (Hint: What portion of the job did each machine
complete when they were both operating together? What might t

10 = 1− 4
14 −

4
10 ,mean?)
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2.6 Complex Rational Fractions
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Practice

Simplify the following:

105

http://www.ck12.org


2.6. Complex Rational Fractions www.ck12.org

106

http://www.ck12.org


www.ck12.org Chapter 2. Rational Functions

107

http://www.ck12.org


2.7. Solutions of Rational Equations www.ck12.org

2.7 Solutions of Rational Equations

Learning Objectives

• Solve rational equations using cross products.
• Solve rational equations using lowest common denominators.
• Solve real-world problems with rational equations.

Introduction

A rational equation is one that contains rational expressions. It can be an equation that contains rational coefficients
or an equation that contains rational terms where the variable appears in the denominator.

An example of the first kind of equation is 3
5 x+ 1

2 = 4.

An example of the second kind of equation is x
x−1 +1 = 4

2x+3 .

The first aim in solving a rational equation is to eliminate all denominators. In this way, we can change a rational
equation to a polynomial equation which we can solve with the methods we have learned this far.

Solve Rational Equations Using Cross Products

A rational equation that contains two terms is easily solved by the method of cross products or cross multiplication.
Consider the following equation.

x
5
=

x+1
2

Our first goal is to eliminate the denominators of both rational expressions. In order to remove the five from the
denominator of the first fraction, we multiply both sides of the equation by five:

�5
1 · x
�51

=
x+1

2
·5

Now, we remove the 2 from the denominator of the second fraction by multiplying both sides of the equation by two.

2 · x = 5(x+1)
�21

�2
1

The equation simplifies to 2x = 5(x+1). Continuing we get:

2x = 5x+5⇒ x =−5
3

Answer

Notice that when we remove the denominators from the rational expressions we end up multiplying the numerator
on one side of the equal sign with the denominator of the opposite fraction.

108

http://www.ck12.org


www.ck12.org Chapter 2. Rational Functions

Once again, we obtain the simplified equation: 2x = 5(x+1), whose solution is x =−5
3 .

We check the answer by plugging the answer back into the original equation.

Check

On the left-hand side, if x =−5
3 , then we have

x
5
=
−5
3
5

=−1
3

On the right hand side, we have

x+1
2

=
−5
3 +1

2
=
−2
3
2

=−1
3

Since the two expressions are equal, the answer checks out.

Example 1

Solve the equation 2
x−2 = 3

x+3 .

Solution

Use cross-multiplication to eliminate the denominators of both fractions.

The equation simplifies to

2(x+3) = 3(x−2)

Simplify.

2x+6 = 3x−6

x = 12

Check.

2
x−2

=
2

12−2
=

2
10

=
1
5

3
x+3

=
3

12+3
=

3
15

=
1
5

The answer checks out because the expressions are equal.
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Example 2

Solve the equation 2x2

x+4 = 5
x .

Solution

Cross-multiply.

The equation simplifies to

2x2 = 5(x+4)

Simplify.

2x2 = 5x+20

Move all terms to one side of the equation.

2x2−5x−20 = 0

Notice that this equation has a degree of two, that is, it is a quadratic equation. We can solve it using the quadratic
formula.

x = 5±
√

185
4 ⇒ x≈−2.15 or x≈ 4.65

Answer

It is important to check the answer in the original equation when the variable appears in any denominator of the
equation because the answer might be an excluded value of any of the rational expression. If the answer obtained
makes any denominator equal to zero, that value is not a solution to the equation.

Check:

First we check x≈−2.15 by substituting it in the original equations. On the left hand side we get the following.

2x
x+4

=
2(−2.15)
−2.15+4

=
−4.30
1.85

≈−2.3

Now, check on the right hand side.

5
x
=

5
−2.15

≈−2.3

Thus, 2.15 checks out.

For x≈ 4.65 we repeat the procedure.
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2x
x+4

=
2(4.65)
4.65+4

≈ 1.08.

5
x
=

5
4.65

≈ 1.08.

4.65 also checks out.

Solve Rational Equations Using the Lowest Common Denominators

An alternate way of eliminating the denominators in a rational equation is to multiply all terms in the equation by
the lowest common denominator. This method is suitable even when there are more than two terms in the equation.

Example 3

Solve 3x
35 = x2

5 −
1

21 .

Solution

Find the lowest common denominator of all the terms in the equation.

LCD = 105

Multiply each term by the LCD.

105 · 3x
35

= 105 · x
2

5
−105 · 1

21

Divide out common factors.

��1053.
3x
��35

=��10521.
x2

�5
−��105 5.

1
��21

The equation simplifies to

9x = 21x2−5

Move all terms to one side of the equation.

21x2−9x−5 = 0

Solve using the quadratic formula.

x =
9±
√

501
42

x≈−0.32 or x≈ 0.75 Answer

Check
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We use the substitution x≈−0.32.

3x
35

=
3(−0.32)

35
≈−0.027

x2

5
− 1

24
=

(−0.32)2

5
− 1

21
≈−0.027. The answer checks out.

Now we check the solution x≈ 0.75.

3x
35

=
3(0.75)

35
≈ 0.064

x2

5
− 1

21
(0.75)2

5
− 1

21
≈ 0.064. The answer checks out.

Example 4

Solve 3
x+2 −

4
x−5 = 2

x2−3x−10 .

Solution

Factor all denominators.

3
x+2

− 4
x−5

− 2
(x+2)(x−5)

Find the lowest common denominator.

LCD = (x+2)(x−5)

Multiply all terms in the equation by the LCD.

(x+2)(x−5) · 3
x+2

− (x+2)(x−5) · 4
x−5

= (x+2)(x−5) · 2
(x+2)(x−5)

Divide out the common terms.

��
��(x+2)1(x−5) · 3

���x+21
− (x+2)����(x−5)1 · 4

���x−51
=���

�(x+2)1
��

��(x−5)1 · 2
���

�(x+2)1��
��(x−5)1

The equation simplifies to

3(x−5)−4(x+2) = 2

Simplify.

3x−15−4x−8 = 2

x =−25 Answer
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Check.

3
x+2

− 4
x−5

=
3

−25+2
− 4
−25−5

≈ 0.003

2
x2−3x−10

=
2

(−25)2−3(−25)−10
≈ 0.003

The answer checks out.

Example 5

Solve 2x
2x+1 +

x
x+4 = 1.

Solution

Find the lowest common denominator.

LCD = (2x+1)(x+4)

Multiply all terms in the equation by the LCD.

(2x+1)(x+4) · 2x
2x+1

+(2x+1)(x+4) · x
x+4

= (2x+1)(x+4)

Cancel all common terms.

��
��(2x+1)1(x+4) · 2x

���2x+1 1
+(2x+1)����(x+4)1 · x

���x+4 1
= (2x+1)(x+4)

The simplified equation is

2x(x+4)+ x(2x+1) = (2x+1)(x+4)

Eliminate parentheses.

2x2 +8x+2x2 + x = 2x2 +9x+4

Collect like terms.

2x2 = 4

x2 = 2⇒ x =±
√

2 Answer

Check.

2x
2x+1

+
x

x+4
=

2
√

2
2
√

2+1
+

√
2√

2+4
≈ 0.739+0.261 = 1. The answer checks out.

2x
2x+1

+
x

x+4
=

2
(
−
√

2
)

2
(
−
√

2
)
+1

+
−
√

2
−
√

2+4
≈ 1.547−0.547 = 1. The answer checks out.
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Solve Real-World Problems Using Rational Equations

Motion Problems

A motion problem with no acceleration is described by the formula distance = speed× time.

These problems can involve the addition and subtraction of rational expressions.

Example 6

Last weekend Nadia went canoeing on the Snake River. The current of the river is three miles per hour. It took Nadia
the same amount of time to travel 12 miles downstream as three miles upstream. Determine the speed at which
Nadias canoe would travel in still water.

Solution

1. Define variables

Let s = speed of the canoe in still water

Then, s+3 = the speed of the canoe traveling downstream

s−3 = the speed of the canoe traveling upstream

2. Construct a table.

We make a table that displays the information we have in a clear manner:

TABLE 2.9:

Direction Distance (miles) Rate Time
Downstream 12 s+3 t
Upstream 3 s−3 t

3. Write an equation.

Since distance = rate× time, we can say that: time = distance
rate .

The time to go downstream is

t =
12

s+3

The time to go upstream is

t =
3

s−3

Since the time it takes to go upstream and downstream are the same then: 3
s−3 = 12

s+3

4. Solve the equation

Cross-multiply.

3(s+3) = 12(s−3)

Simplify.
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3s+9 = 12s−36

Solve.

s = 5 mi/hr Answer

Nadia would travel 5 mi/hr or 5 mph in still water.

5. Check

Downstream: t = 12
5+3 = 12

8 = 1 1
2 hour; Upstream: t = 3

5−3 = 3
2 = 1 1

2 hour. The answer checks out.

Example 8

Peter rides his bicycle. When he pedals uphill he averages a speed of eight miles per hour, when he pedals downhill
he averages 14 miles per hour. If the total distance he travels is 40 miles and the total time he rides is four hours,
how long did he ride at each speed?

Solution

1. Define variables.

Let t1 = time Peter bikes uphill, t2 = time Peter bikes downhill, and d = distance he rides uphill.

2. Construct a table

We make a table that displays the information we have in a clear manner:

TABLE 2.10:

Direction Distance (miles) Rate (mph) Time (hours)
Uphill d 8 t1
Downhill 40−d 14 t2

3. Write an equation

We know that

time =
distance

rate

The time to go uphill is

t1 =
d
8

The time to go downhill is

t2 =
40−d

14

We also know that the total time is 4 hours.
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d
8
+

40−d
14

= 4

4. Solve the equation.

Find the lowest common denominator:

LCD = 56

Multiply all terms by the common denominator:

56 · d
8
+56 · 40−d

14
= 4 ·56

7d +160−4d = 224

3d = 64

Solve.

d ≈ 21.3 miles Answer

5. Check.

Uphill: t = 21.33
8 ≈ 2.67 hours; Downhill: t = 40−21.33

14 ≈ 1.33 hours. The answer checks out.

Shares

Example 8

A group of friends decided to pool together and buy a birthday gift that cost $200. Later 12 of the friends decided
not to participate any more. This meant that each person paid $15 more than the original share. How many people
were in the group to start?

Solution

1. Define variables.

Let x = the number of friends in the original group

2. Make a table.

We make a table that displays the information we have in a clear manner:

TABLE 2.11:

Number of People Gift Price Share Amount
Original group x 200 200

x
Later group x−12 200 200

x−12

3. Write an equation.

Since each persons share went up by $15 after 12 people refused to pay, we write the equation:
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200
x−12

=
200

x
+15

4. Solve the equation.

Find the lowest common denominator.

LCD = x(x−12)

Multiply all terms by the LCM.

x(x−12) · 200
x−12

= x(x−12) · 200
x

+ x(x−12) ·15

Divide out common factors in each term:

x���
�(x−12)1 · 200
���x−12 1

= �x
1(x−12) · 200

�x 1
+ x(x−12) ·15

Simplify.

200x = 200(x−12)+15x(x−12)

Eliminate parentheses.

200x = 200x−2400+15x2−180x

Collect all terms on one side of the equation.

0 = 15x2−180x−2400

Divide all terms by 15.

0 = x2−12x−160

Factor.

0 = (x−20)(x+8)

Solve.
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x = 20,x =−8

The answer is x = 20 people. We discard the negative solution since it does not make sense in the context of this
problem.

5. Check.

Originally $200 shared among 20 people is $10 each. After 12 people leave, $200 shared among 8 people is $25
each. So each person pays $15 more.

The answer checks out.

Review Questions

Solve the following equations.

1. 2x+1
4 = x−3

10
2. 4x

x+2 = 5
9

3. 5
3x−4 = 2

x+1
4. 7x

x−1 = x+3
x

5. 2
x+3 −

1
x+4 = 0

6. 3x2+2x−1
x2−1 =−2

7. x+ 1
x = 2

8. −3+ 1
x+1 =−9

4
9. 1

x −
x

x−2 = 2
10. 3

2x−1 +
2

x+4 = 2
11. 2x

x−1 −
x

3x+4 = 3
12. x+1

x−1 +
x−4
x+4 = 3

13. x
x−2 +

x
x+3 = 1

x2+x−6
14. 2

x2+4x+3 = 2+ x−2
x+3

15. 1
x+5 −

1
x−5 = 1−x

x+5
16. x

x2−36 +
1

x−6 = 1
x+6

17. 2x
3x+3 −

1
4x+4 = 2

x+1
18. −x

x−2 +
3x−1
x+4 = 1

x2+2x−8
19. Juan jogs a certain distance and then walks a certain distance. When he jogs he averages 7 miles/hour. When

he walks, he averages 3.5 miles/hour. If he walks and jogs a total of 6 miles in a total of 1 hour and 12 minutes,
how far does he jog and how far does he walk?

20. A boat travels 60 miles downstream in the same time as it takes it to travel 40 miles upstream. The boat’s
speed in still water is 20 miles/hour. Find the speed of the current.

21. Paul leaves San Diego driving at 50 miles/hour. Two hours later, his mother realizes that he forgot something
and drives in the same direction at 70 miles/hour. How long does it take her to catch up to Paul?

22. On a trip, an airplane flies at a steady speed against the wind. On the return trip the airplane flies with the
wind. The airplane takes the same amount of time to fly 300 miles against the wind as it takes to fly 420 miles
with the wind. The wind is blowing at 30 miles/hour. What is the speed of the airplane when there is no wind?

23. A debt of $420 is shared equally by a group of friends. When five of the friends decide not to pay, the share
of the other friends goes up by $25. How many friends were in the group originally?

24. A non-profit organization collected $2250 in equal donations from their members to share the cost of im-
proving a park. If there were thirty more members, then each member could contribute $20 less. How many
members does this organization have?
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Review Answers

1. x =−11
8

2. x = 10
31

3. x = 13
4. x = 1±i

√
17

6
5. x =−5
6. x = 3

5
7. x = 1
8. x = 1

3
9. x = 1,x = 2

3
10. x≈−3.17,x≈ 1.42
11. x≈−1.14,x≈ 2.64
12. x≈−10.84,x≈ 1.84
13. x =−1,x = 1

2
14. x =−2,x =−1

3
15. x≈−.74,x≈ 6.74
16. x =−12
17. x = 27

8
18. x≈ .092,x≈ 5.41
19. jogs 3.6 miles and walks 2.4 miles (Hint: How do distance and speed related to time?)
20. 4 miles/hour (Hint: How does the current affect the boat’s speed upstream? Downstream?)
21. 5 hours (Hint: Who travels for a longer time?)
22. 180 miles/hour (How is the effective of speed of the plane change when flying with the wind? Against the

wind?
23. 12 friends (Hint: Would the original group of friends have paid a higher or lower portion of the debt? By

how much did the portion of the share for each person change as a result of five friends not paying?
24. 45 members (Hint: Does having more members in the organization increase or decrease the amount each

person would need to contribute? By how much?
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3.1 Exponent Properties Involving Products

Learning Objectives

• Use the product of a power property.
• Use the power of a product property.
• Simplify expressions involving product properties of exponents.

Introduction

In this chapter, we will discuss exponents and exponential functions. In Lessons 8.1, 8.2 and 8.3, we will be learning
about the rules governing exponents. We will start with what the word exponent means.

Consider the area of the square shown right. We know that the area is given by:

But we also know that for any rectangle, Area = (width) ??? (height), so we can see that:

Similarly, the volume of the cube is given by:

Volume = width · depth · height = x · x · x

But we also know that the volume of the cube is given by Volume = x3 so clearly

x3 = x · x · x

You probably know that the power (the small number to the top right of the x) tells you how many x′s to multiply
together. In these examples the x is called the base and the power (or exponent) tells us how many factors of the
base there are in the full expression.

x2 = x · x︸︷︷︸
2 factors of x

x7 = x · x · x · x · x · x · x︸                ︷︷                ︸
7 factors of x

x3 = x · x · x︸   ︷︷   ︸
3 factors of x

xn = x · x · . . . . . . · x︸            ︷︷            ︸
n factors of x
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Example 1

Write in exponential form.

(a) 2 ·2

(b) (−3)(−3)(−3)

(c) y · y · y · y · y

(d) (3a)(3a)(3a)(3a)

Solution

(a) 2 ·2 = 22 because we have 2 factors of 2

(b) (−3)(−3)(−3) = (−3)3 because we have 3 factors of (−3)

(c) y · y · y · y · y = y5 because we have 5 factors of y

(d) (3a)(3a)(3a)(3a) = (3a)4 because we have 4 factors of 3a

When we deal with numbers, we usually just simplify. We’d rather deal with 16 than with 24. However, with
variables, we need the exponents, because we’d rather deal with x7 than with x · x · x · x · x · x · x.

Lets simplify Example 1 by evaluating the numbers.

Example 2

Simplify.

(a) 2 ·2

(b) (−3)(−3)(−3)

(c) y · y · y · y · y

(d) (3a)(3a)(3a)(3a)

Solution

(a) 2 ·2 = 22 = 4

(b) (−3)(−3)(−3) = (−3)3 =−27

(c) y · y · y · y · y = y5

(d) (3a)(3a)(3a)(3a) = (3a)4 = 34 ·a4 = 81a4

Note: You must be careful when taking powers of negative numbers. Remember these rules.

(negative number) (positive number) = negative number

(negative number) (negative number) = positive number

For even powers of negative numbers, the answer is always positive. Since we have an even number of factors, we
make pairs of negative numbers and all the negatives cancel out.

(−2)6 = (−2)(−2)(−2)(−2)(−2)(−2) = (−2)(−2)︸        ︷︷        ︸
+4

·(−2)(−2)︸        ︷︷        ︸
+4

·(−2)(−2)︸        ︷︷        ︸
+4

=+64

For odd powers of negative numbers, the answer is always negative. Since we have an odd number of factors, we
can make pairs of negative numbers to get positive numbers but there is always an unpaired negative factor, so the
answer is negative:

Ex: (−2)5 = (−2)(−2)(−2)(−2)(−2) = (−2)(−2)︸        ︷︷        ︸
+4

·(−2)(−2)︸        ︷︷        ︸
+4

·(−2)︸ ︷︷ ︸
−2

=−32
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Use the Product of Powers Property

What happens when we multiply one power of x by another? See what happens when we multiply x to the power 5
by x cubed. To illustrate better we will use the full factored form for each:

(x · x · x · x · x)︸            ︷︷            ︸
x5

·(x · x · x)︸     ︷︷     ︸
x3

= (x · x · x · x · x · x · x · x)︸                       ︷︷                       ︸
x8

So x5 ·x3 = x8. You may already see the pattern to multiplying powers, but lets confirm it with another example. We
will multiply x squared by x to the power 4:

(x · x)︸  ︷︷  ︸
x2

·(x · x · x · x)︸         ︷︷         ︸
x4

= (x · x · x · x · x · x)︸                ︷︷                ︸
x6

So x2 ·x4 = x6. Look carefully at the powers and how many factors there are in each calculation. 5 factors of x times
3 factors of x equals (5+3) = 8 factors of x. 2 factors of x times 4 factors of x equals (2+4) = 6 factors of x.

You should see that when we take the product of two powers of x, the number of factors of x in the answer is the
sum of factors in the terms you are multiplying. In other words the exponent of x in the answer is the sum of the
exponents in the product.

Product rule for exponents: xn · xm = xn+m

Example 3

Multiply x4 · x5.

Solution

x4 · x5 = x4+5 = x9

When multiplying exponents of the same base, it is a simple case of adding the exponents. It is important that when
you use the product rule you avoid easy-to-make mistakes. Consider the following.

Example 4

Multiply 22 ·23.

Solution

22 ·23 = 25 = 32

Note that when you use the product rule you DO NOT MULTIPLY BASES. In other words, you must avoid the
common error of writing���

���XXXXXX22 ·23 = 45. Try it with your calculator and check which is right!

Example 5

Multiply 22 ·33.

Solution

22 ·33 = 4 ·27 = 108

In this case, the bases are different. The product rule for powers ONLY APPLIES TO TERMS THAT HAVE THE
SAME BASE. Common mistakes with problems like this include���

���XXXXXX22 ·33 = 65.
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Use the Power of a Product Property

We will now look at what happens when we raise a whole expression to a power. Lets take x to the power 4 and
cube it. Again we will us the full factored form for each.

(x4)3 = x4 · x4 · x4 3 factors of x to the power 4.

(x · x · x · x)︸         ︷︷         ︸
x4

·(x · x · x · x)︸         ︷︷         ︸
x4

·(x · x · x · x)︸         ︷︷         ︸
x4

= (x · x · x · x · x · x · x · x · x · x · x · x)︸                                    ︷︷                                    ︸
x12

So (x4)3 = x12. It is clear that when we raise a power of x to a new power, the powers multiply.

When we take an expression and raise it to a power, we are multiplying the existing powers of x by the power above
the parenthesis.

Power rule for exponents: (xn)m = xn·m

Power of a product

If we have a product inside the parenthesis and a power on the parenthesis, then the power goes on each element
inside. So that, for example, (x2y)4 =)(x2)4 · (y)4 = x8y4. Watch how it works the long way.

(x · x · y)︸     ︷︷     ︸
x2y

·(x · x · y)︸     ︷︷     ︸
x2y

·(x · x · y)︸     ︷︷     ︸
x2y

·(x · x · y)︸     ︷︷     ︸
x2y

= (x · x · x · x · x · x · x · x · y · y · y · y)︸                                    ︷︷                                    ︸
x8y4

Power rule for exponents: (xn)m = xnm and (xnym)p = xnpymp

WATCH OUT! This does NOT work if you have a sum or difference inside the parenthesis. For example, (x+
y)2 6= x2 + y2. This is a commonly made mistake. It is easily avoidable if you remember what an exponent means
(x+ y)2 = (x+ y)(x+ y). We will learn how to simplify this expression in a later chapter.

Lets apply the rules we just learned to a few examples.

When we have numbers, we just evaluate and most of the time it is not really important to use the product rule and
the power rule.

Example 6

Simplify the following expressions.

(a) 34 ·37

(b) 26 ·2

(c) (42)3

Solution

In each of the examples, we want to evaluate the numbers.

(a) Use the product rule first: 35 ·37 = 312

Then evaluate the result: 312 = 531,441

OR

We can evaluate each part separately and then multiply them. 35 ·37 = 243 ·2,187 = 531,441.
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Use the product rule first. 26 ·2 = 27

Then evaluate the result. 27 = 128

OR

We can evaluate each part separately and then multiply them. 26 ·2 = 64 ·2 = 128

(c) Use the power rule first. (42)3 = 46

Then evaluate the result. 46 = 4096

OR

We evaluate inside the parenthesis first. (42)3 = (16)3

Then apply the power outside the parenthesis. (16)3 = 4096

When we have just one variable in the expression then we just apply the rules.

Example 7

Simplify the following expressions.

(a) x2 · x7

(b) (y3)5

Solution

(a) Use the product rule. x2 · x7 = x2+7 = x9

(b) Use the power rule. (y3)5 = y3·5 = y15

When we have a mix of numbers and variables, we apply the rules to the numbers or to each variable separately.

Example 8

Simplify the following expressions.

(a) (3x2y3) · (4xy2)

(b) (4xyz) · (x2y3) · (2yz4)

(c) (2a3b3)2

Solution

(a) We group like terms together.

(3x2y3) · (4xy2) = (3 ·4) · (x2 · x) · (y3 · y2)

We multiply the numbers and apply the product rule on each grouping.

12x3y5

(b) We groups like terms together.

(4xyz) · (x2y3) · (2yz4) = (4 ·2) · (x · x2) · (y · y3 · y) · (z · z4)

We multiply the numbers and apply the product rule on each grouping.
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8x3y5z5

(c) We apply the power rule for each separate term in the parenthesis.

(2a3b3)2 = 22 · (a3)2 · (b3)2

We evaluate the numbers and apply the power rule for each term.

4a6b6

In problems that we need to apply the product and power rules together, we must keep in mind the order of operation.
Exponent operations take precedence over multiplication.

Example 9

Simplify the following expressions.

(a) (x2)2 · x3

(b) (2x2y) · (3xy2)3

(c) (4a2b3)2 · (2ab4)3

Solution

(a) (x2)2 · x3

We apply the power rule first on the first parenthesis.

(x2)2 · x3 = x4 · x3

Then apply the product rule to combine the two terms.

x4 · x3 = x7

(b) (2x2y) · (3xy2)3

We must apply the power rule on the second parenthesis first.

(2x2y) · (3xy2)3 = (2x2y) · (27x3y6)

Then we can apply the product rule to combine the two parentheses.

(2x2y) · (27x3y6) = 54x5y7

(c) (4a2b3)2 · (2ab4)3
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We apply the power rule on each of the parentheses separately.

(4a2b3)2 · (2ab4)3 = (16a4b6) · (8a3b12)

Then we can apply the product rule to combine the two parentheses.

(16a4b6) · (8a3b12) = 128a7b18

Review Questions

Write in exponential notation.

1. 4 ·4 ·4 ·4 ·4
2. 3x ·3x ·3x
3. (−2a)(−2a)(−2a)(−2a)
4. 6 ·6 ·6 · x · x · y · y · y · y

Find each number:

5. 54

6. (−2)6

7. (0.1)5

8. (−0.6)3

Multiply and simplify.

9. 63 ·66

10. 22 ·24 ·26

11. 32 ·43

12. x2 · x4

13. (−2y4)(−3y)
14. (4a2)(−3a)(−5a4)

Simplify.

15. (a3)4

16. (xy)2

17. (3a2b3)4

18. (−2xy4z2)5

19. (−8x)3(5x)2

20. (4a2)(−2a3)4

21. (12xy)(12xy)2

22. (2xy2)(−x2y)2(3x2y2)

Review Answers

1. 45

2. (3x)3

128

http://www.ck12.org


www.ck12.org Chapter 3. Exponential Functions

3. (−2a)4

4. 63x2y4

5. 625
6. 64
7. 0.00001
8. −0.216
9. 10077696

10. 4096
11. 576
12. x6

13. 6y5

14. 60a7

15. a12

16. x2y2

17. 81a8b12

18. −32x5y20z10

19. 12800x5

20. 64a14

21. 1728x3y3

22. 6x7y6
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3.2 Exponent Properties Involving Quotients

Learning Objectives

• Use the quotient of powers property.
• Use the power of a quotient property.
• Simplify expressions involving quotient properties of exponents.

Use the Quotient of Powers Property

You saw in the last section that we can use exponent rules to simplify products of numbers and variables. In this
section, you will learn that there are similar rules you can use to simplify quotients. Lets take an example of a
quotient, x7 divided by x4.

x7

x4 = �
x ·�x ·�x ·�x · x · x · x
�x ·�x ·�x ·�x

=
x · x · x

1
= x3

You should see that when we divide two powers of x, the number of factors of x in the solution is the difference
between the factors in the numerator of the fraction, and the factors in the denominator. In other words, when
dividing expressions with the same base, keep the base and subtract the exponent in the denominator from the
exponent in the numerator.

Quotient Rule for Exponents: xn

xm = xn−m

When we have problems with different bases, we apply the quotient rule separately for each base.

x5y3

x3y2 = �
x ·�x ·�x · x · x
�x ·�x ·�x

· �y ·�y · y
�y ·�y

=
x · x
1
· y

1
= x2y OR

x5y3

x3y2 = x5−3 · y3−2 = x2y

Example 1

Simplify each of the following expressions using the quotient rule.

(a) x10

x5

(b) a6

a

(c) a5b4

a3b2

Solution

Apply the quotient rule.

(a) x10

x5 = x10−5 = x5

(b) a6

a = a6−1 = a5

(c) a5b4

a3b2 = a5−3 ·b4−2 = a2b2

Now lets see what happens if the exponent on the denominator is bigger than the exponent in the numerator.
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Example 2

Divide.x4÷ x7 Apply the quotient rule.

x4

x7 = x4−7 = x−3

A negative exponent!? What does that mean?

Lets do the division longhand by writing each term in factored form.

x4

x6 = �x ·�x ·�x ·�x
�x ·�x ·�x ·�x · x · x

=
1

x · x
=

1
x2

We see that when the exponent in the denominator is bigger than the exponent in the numerator, we still subtract the
powers. This time we subtract the smaller power from the bigger power and we leave the x′s in the denominator.

When you simplify quotients, to get answers with positive exponents you subtract the smaller exponent from the
bigger exponent and leave the variable where the bigger power was.

• We also discovered what a negative power means x−3 = 1
x3 . We’ll learn more on this in the next section!

Example 3

Simplify the following expressions, leaving all powers positive.

(a) x2

x6

(b) a2b6

a5b

Solution

(a) Subtract the exponent in the numerator from the exponent in the denominator and leave the xs in the denominator.

x2

x6 =
1

x6−2 =
1
x4

(b) Apply the rule on each variable separately.

a2b6

a5b
=

1
a5−2 ·

b6−1

1
=

b5

a3

The Power of a Quotient Property

When we apply a power to a quotient, we can learn another special rule. Here is an example.

(
x3

y2

)4

=

(
x3

y2

)
·
(

x3

y2

)
·
(

x3

y2

)
·
(

x3

y2

)
=

(x · x · x) · (x · x · x) · (x · x · x) · (x · x · x)
(y · y) · (y · y) · (y · y) · (y · y)

=
x12

y8

Notice that the power on the outside of the parenthesis multiplies with the power of the x in the numerator and the
power of the y in the denominator. This is called the power of a quotient rule.

Power Rule for Quotients
(

xn

ym

)p
= xn·p

ym·p
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Simplifying Expressions Involving Quotient Properties of Exponents

Lets apply the rules we just learned to a few examples.

• When we have numbers with exponents and not variables with exponents, we evaluate.

Example 4

Simplify the following expressions.

(a) 45

42

(b) 53

57

(c)
(

34

52

)2

Solution

In each of the examples, we want to evaluate the numbers.

(a) Use the quotient rule first.

45

42 = 45−2 = 43

Then evaluate the result.

43 = 64

OR

We can evaluate each part separately and then divide.

1024
16

= 64

(b) Use the quotient rule first.

53

57 =
1

57−3 =
1
54

Then evaluate the result.

1
54 =

1
625

OR

We can evaluate each part separately and then reduce.

53

57 =
125

78125
=

1
625
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It makes more sense to apply the quotient rule first for examples (a) and (b). In this way the numbers we are
evaluating are smaller because they are simplified first before applying the power.

(c) Use the power rule for quotients first.

(
34

52

)2

=
38

54

Then evaluate the result.

38

54 =
6561
625

OR

We evaluate inside the parenthesis first.

(
34

52

)2

=

(
81
25

)2

Then apply the power outside the parenthesis.

(
81
25

)2

=
6561
625

When we have just one variable in the expression, then we apply the rules straightforwardly.

Example 5: Simplify the following expressions:

(a) x12

x5

(b)
(

x4

x

)5

Solution:

(a) Use the quotient rule.

x12

x5 = x12−5 = x7

(b) Use the power rule for quotients first.

(
x4

x

)5

=
x20

x5

Then apply the quotient rule

x20

x5 = x15
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OR

Use the quotient rule inside the parenthesis first.

(
x4

x

)5

= (x3)5

Then apply the power rule.

(x3)5 = x15

When we have a mix of numbers and variables, we apply the rules to each number or each variable separately.

Example 6

Simplify the following expressions.

(a) 6x2y3

2xy2

(b)
(

2a3b3

8a7b

)2

Solution

(a) We group like terms together.

6x2y3

2xy2 =
6
2
· x

2

x
· y

3

y2

We reduce the numbers and apply the quotient rule on each grouping.

3xy >

(b) We apply the quotient rule inside the parenthesis first.

(
2a3b3

8a7b

)2

=

(
b2

4a4

)2

Apply the power rule for quotients.

(
b2

4a4

)2

=
b4

16a8

In problems that we need to apply several rules together, we must keep in mind the order of operations.

Example 7

Simplify the following expressions.

(a) (x2)2 · x6

x4
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(b)
(

16a2

4b5

)3
· b2

a16

Solution

(a) We apply the power rule first on the first parenthesis.

(x2)2 · x
6

x4 = x4 · x
6

x4

Then apply the quotient rule to simplify the fraction.

x4 · x
6

x4 = x4 · x4

Apply the product rule to simplify.

x4 · x2 = x6

(b) Simplify inside the first parenthesis by reducing the numbers.

(
4a2

b5

)3

· b2

a16

Then we can apply the power rule on the first parenthesis.

(
4a2

b5

)3

· b2

a16 =
64a6

b15 ·
b2

a16

Group like terms together.

64a6

b15 ·
b2

a16 = 64 · a6

a16 ·
b2

b15

Apply the quotient rule on each fraction.

64 · a6

a16 ·
b2

b15 =
64

a10b13

Review Questions

Evaluate the following expressions.

1. 56

52

2. 67

63
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3. 34

310

4.
(

22

33

)3

Simplify the following expressions.

5. a3

a2

6. x5

x9

7.
(

a3b4

a2b

)3

8. x6y2

x2y5

9. 6a3

2a2

10. 15x5

5x

11.
(

18a4

15a10

)4

12. 25yx6

20y5x2

13.
(

x6y2

x4y4

)3

14.
(

6a2

4b4

)2
· 5b

3a

15. (3ab)2(4a3b4)3

(6a2b)4

16. (2a2bc2)(6abc3)
4ab2c

Review Answers

1. 54

2. 64 = 1296
3. 1

36 =
1

729

4. 26

39 =
64

19683
5. a
6. 1

x4

7. a3b9

8. x4

y3

9. 3a
10. 3x4

11. 1296
625a4

12. 5x4

4y4

13. x6

y6

14. 15a3

4b7

15. 4a3b10

9
16. 3a2c4
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3.3 Zero, Negative, and Fractional Exponents

Learning Objectives

• Simplify expressions with zero exponents.
• Simplify expressions with negative exponents.
• Simplify expression with fractional exponents.
• Evaluate exponential expressions.

Introduction

There are many interesting concepts that arise when contemplating the product and quotient rule for exponents.
You may have already been wondering about different values for the exponents. For example, so far we have only
considered positive, whole numbers for the exponent. So called natural numbers (or counting numbers) are easy
to consider, but even with the everyday things around us we think about questions such as is it possible to have a
negative amount of money? or what would one and a half pairs of shoes look like? In this lesson, we consider what
happens when the exponent is not a natural number. We will start with What happens when the exponent is zero?

Simplify Expressions with Exponents of Zero

Let us look again at the quotient rule for exponents (that xn

xm = xn−m) and consider what happens when n = m. Lets
take the example of x4 divided by x4.

x4

x4 = x(4−4) = x0

Now we arrived at the quotient rule by considering how the factors of x cancel in such a fraction. Lets do that again
with our example of x4 divided by x4.

x4

x4 = �
x ·�x ·�x ·�x
�x ·�x ·�x ·�x

= 1

So x0 = 1.

This works for any value of the exponent, not just 4.

xn

xn = xn−n = x0

Since there is the same number of factors in the numerator as in the denominator, they cancel each other out and we
obtain x0 = 1. The zero exponent rule says that any number raised to the power zero is one.

Zero Rule for Exponents: x0 = 1, x 6= 0
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Simplify Expressions With Negative Exponents

Again we will look at the quotient rule for exponents (that xn

xm = xn−m) and this time consider what happens when
m > n. Lets take the example of x4 divided by x6.
x4

x6 = x(4−6) = x−2 for x 6= 0.

By the quotient rule our exponent for x is −2. But what does a negative exponent really mean? Lets do the same
calculation long-hand by dividing the factors of x4 by the factors of x6.

x4

x6 = �x ·�x ·�x ·�x
�x ·�x ·�x ·�x · x · x

=
1

x · x
=

1
x2

So we see that x to the power −2 is the same as one divided by x to the power +2. Here is the negative power rule
for exponents.

Negative Power Rule for Exponents 1
xn = x−n x 6= 0

You will also see negative powers applied to products and fractions. For example, here it is applied to a product.

(x3y)−2 = x−6y−2 using the power rule

x−6y−2 =
1
x6 ·

1
y2 =

1
x6y2 using the negative power rule separately on each variable

Here is an example of a negative power applied to a quotient.

(a
b

)−3
=

a−3

b−3 using the power rule for quotients

a−3

b−3 =
a−3

1
· 1

b−3 =
1
a3 ·

b3

1
using the negative power rule on each variable separately

1
a3 ·

b3

1
=

b3

a3 simplifying the division of fractions

b3

a3 =

(
b
a

)3

using the power rule for quotients in reverse.

The last step is not necessary but it helps define another rule that will save us time. A fraction to a negative power is
flipped.

Negative Power Rule for Fractions
(

x
y

)−n
=
( y

x

)n
, x 6= 0,y 6= 0

In some instances, it is more useful to write expressions without fractions and that makes use of negative powers.

Example 1

Write the following expressions without fractions.

(a) 1
x

(b) 2
x2

(c) x2

y3

(d) 3
xy

Solution
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We apply the negative rule for exponents 1
xn = x−n on all the terms in the denominator of the fractions.

(a) 1
x = x−1

(b) 2
x2 = 2x−2

(c) x2

y3 = x2y−3

(d) 3
xy = 3x−1y−1

Sometimes, it is more useful to write expressions without negative exponents.

Example 2

Write the following expressions without negative exponents.

(a) 3x−3

(b) a2b−3c−1

(c) 4x−1y3

(d) 2x−2

y−3

Solution

We apply the negative rule for exponents 1
xn = x−n on all the terms that have negative exponents.

(a) 3x−3 = 3
x3

(b) a2b−3c−1 = a2

b3c

(c) 4x−1y3 = 4y3

x

(d) 2x−2

y−3 = 2y3

x2

Example 3

Simplify the following expressions and write them without fractions.

(a) 4a2b3

2a5b

(b)
(

x
3y2

)3
· x2y

4

Solution

(a) Reduce the numbers and apply quotient rule on each variable separately.

4a2b3

6a5b
= 2 ·a2−5 ·b3−1 = 2a−3b2

(b) Apply the power rule for quotients first.

(
2x
y2

)3

· x
2y
4

=
8x2

y6 ·
x2y
4

Then simplify the numbers, use product rule on the x′s and the quotient rule on the y′s.

8x3

y6 ·
x2y
4

= 2 · x3+2 · y1−6 = 2x5y−5
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Example 4

Simplify the following expressions and write the answers without negative powers.

(a)
(

ab−2

b3

)2

(b) x−3y2

x2y−2

Solution

(a) Apply the quotient rule inside the parenthesis.

(
ab−2

b3

)2

= (ab−5)2

Apply the power rule.

(ab−5)2 = a2b−10 =
a2

b10

(b) Apply the quotient rule on each variable separately.

x−3y2

x2y−2 = x−3−2y2−(−2) = x−5y4 =
y4

x5

Simplify Expressions With Fractional Exponents

The exponent rules you learned in the last three sections apply to all powers. So far we have only looked at positive
and negative integers. The rules work exactly the same if the powers are fractions or irrational numbers. Fractional
exponents are used to express the taking of roots and radicals of something (square roots, cube roots, etc.). Here is
an exmaple.
√

a = a1/2 and 3√a = a1/3 and
5√

a2 =
(
a2
) 1

5 = a
2
5 = a2/5

Roots as Fractional Exponents m√an = an/m

We will examine roots and radicals in detail in a later chapter. In this section, we will examine how exponent rules
apply to fractional exponents.

Evaluate Exponential Expressions

When evaluating expressions we must keep in mind the order of operations. You must remember PEMDAS.

Evaluate inside the Parenthesis.

Evaluate Exponents.

Perform Multiplication and Division operations from left to right.

Perform Addition and Subtraction operations from left to right.

Example 6

Evaluate the following expressions to a single number.

(a) 50

(b) 72
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(c)
(2

3

)3

(d) 3−3

Solution

(a) 50 = 1 Remember that a number raised to the power 0 is always 1.

(b) 72 = 7 ·7 = 49

(c)
(2

3

)3
= 23

33 =
8
27

(d) 3−3 = 1
33 =

1
27

Example 7

Evaluate the following expressions to a single number.

(a) 3 ·55−10 ·5+1

(b) 2·42−3·52

32

(c)
(

33

22

)−2
· 3

4

Solution

(a) Evaluate the exponent.

3 ·52−10 ·6+1 = 3 ·25−10 ·5+1

Perform multiplications from left to right.

3 ·25−10 ·5+1 = 75−50+1

Perform additions and subtractions from left to right.

75−50+1 = 26

(b) Treat the expressions in the numerator and denominator of the fraction like they are in parenthesis.

(2 ·42−3 ·52)

(32−22)
=

(2 ·16−3 ·25)
(9−4)

=
(32−75)

5
=
−43

5

(c)
(

33

22

)−2
· 3

4 =
(

22

33

)2
· 3

4 = 24

36 · 3
4 = 24

36 · 3
22 =

22

35 =
4

243

Example 8

Evaluate the following expressions for x = 2,y =−1, z = 3.

(a) 2x2−3y3 +4z

(b) (x2− y2)2

(c)
(

3x2y5

4z

)−2

Solution
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(a) 2x2−3y+4z = 2 ·22−3 · (−1)3 +4 ·3 = 2 ·4−3 · (−1)+4 ·3 = 8+3+12 = 23

(b) (x2− y2)2 = (22− (−1)2)2 = (4−1)2 = 32 = 9

(c)
(

3x2−y5

4z

)−2
=
(

3·22·(−1)5

4·3

)−2
=
(

3·4·(−1)
12

)−2
=
(−12

12

)−2
=
(−1

1

)−2
=
( 1
−1

)2
= (−1)2 = 1

Review Questions

Simplify the following expressions, be sure that there aren’t any negative exponents in the answer.

1. x−1 · y2

2. x−4

3. x−3

x−7

4. x−3y−5

z−7

5. (x
1
2 y−

2
3 )(x2y

1
3 )

6.
(a

b

)−2

7. (3a−2b2c3)3

8. x−3 · x3

Simplify the following expressions so that there aren’t any fractions in the answer.

9. a−3(a5)
a−6

10. 5x6y2

x8y

11. (4ab6)3

(ab)5

12.
(

3x
y1/3

)3

13. 3x2y3/2

xy1/2

14. (3x3)(4x4)
(2y)2

15. a−2b−3

c−1

16. x1/2y5/2

x3/2y3/2

Evaluate the following expressions to a single number.

17. 3−2

18. (6.2)0

19. 8−4 ·86

20. (16
1
2 )3

21. x24x3y44y2 if x = 2 and y =−1
22. a4(b2)3 +2ab if a =−2 and b = 1
23. 5x2−2y3 +3z if x = 3, y = 2, and z = 4

24.
(

a2

b3

)−2
if a = 5 and b = 3

Review Answers

1. y2

x
2. 1

x4

3. x4
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4. z7

x3y5

5. x5/2

y1/3

6.
(b

a

)2
or b2

a2

7. 27b6c9

a6

8. 1
9. a8

10. 5x−2y
11. 64a−2b

1
3

12. 27x2y−1

13. 3xy
14. 6x7y−2

15. a−2b−3c
16. x−1y
17. 0.111
18. 1
19. 64
20. 64
21. 512
22. 12
23. 41
24. 1.1664
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3.4 Scientific Notation

Learning Objectives

• Write numbers in scientific notation.
• Evaluate expressions in scientific notation.
• Evaluate expressions in scientific notation using a graphing calculator.

Introduction Powers of 10

Consider the number six hundred and forty three thousand, two hundred and ninety seven. We write it as 643,297
and each digits position has a value assigned to it. You may have seen a table like this before.

hundred-thousands ten-thousands thousands hundreds tens units (ones)

6 4 3 2 9 7

We have seen that when we write an exponent above a number it means that we have to multiply a certain number of
factors of that number together. We have also seen that a zero exponent always gives us one, and negative exponents
make fractional answers. Look carefully at the table above. Do you notice that all the column headings are powers
of ten? Here they are listed.

100,000 = 105

10,000 = 104

1,000 = 103

100 = 102

10 = 101

Even the units column is really just a power of ten. Unit means 1 and 1 = 100.

If we divide 643,297 by 100,000 we get 6.43297. If we multiply this by 100,000 we get back to our original number.
But we have just seen that 100,000 is the same as 105, so if we multiply 6.43297 by 105 we should also get our
original answer. In other words

6.43297×105 = 643,297

So we have found a new way of writing numbers! What do you think happens when we continue the powers of ten?
Past the units column down to zero we get into decimals, here the exponent becomes negative.

Writing Numbers Greater Than One in Scientific Notation

Scientific notation numbers are always written in the following form.

144

http://www.ck12.org


www.ck12.org Chapter 3. Exponential Functions

a×10b

Where 1 ≤ a < 10 and b, the exponent, is an integer. This notation is especially useful for numbers that are either
very small or very large. When we use scientific notation to write numbers, the exponent on the 10 determines the
position of the decimal point.

Look at the following examples.

1.07×104 = 10,700

1.07×103 = 1,070

1.07×102 = 107

1.07×101 = 10.7

1.07×100 = 1.07

1.07×10−1 = 0.107

1.07×10−2 = 0.0107

1.07×10−3 = 0.00107

1.07×10−4 = 0.000107

Look at the first term of the list and examine the position of the decimal point in both expressions.

So the exponent on the ten acts to move the decimal point over to the right. An exponent of 4 moves it 4 places and
an exponent of 3 would move it 3 places.

Example 1

Write the following numbers in scientific notation.

(a) 63

(b) 9,654

(c) 653,937,000
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(d) 1,000,000,006

(a) 63 = 6.3×10 = 6.3×101

(b) 9,654 = 9.654×1,000 = 9.654×103

(c) 653,937,000 = 6.53937000×100,000,000 = 6.53937×108

(d) 1,000,000,006 = 1.000000006×1,000,000,000 = 1.000000006×109

Example 2

The Sun is approximately 93 million miles for Earth. Write this distance in scientific notation.

This time we will simply write out the number long-hand (with a decimal point) and count decimal places.

Solution

93,000,000,0︸              ︷︷              ︸
7 decimal places

= 9.3×107 miles

A Note on Significant Figures

We often combine scientific notation with rounding numbers. If you look at Example 2, the distance you are given
has been rounded. It is unlikely that the distance is exactly 93 million miles! Looking back at the numbers in
Example 1, if we round the final two answers to 2 significant figures (2 s.f.) they become:

1(c) 6.5×108

1(d) 1.0×109

Note that the zero after the decimal point has been left in for Example 1(d) to indicate that the result has been
rounded. It is important to know when it is OK to round and when it is not.

Writing Numbers Less Than One in Scientific Notation

We have seen how we can use scientific notation to express large numbers, but it is equally good at expressing
extremely small numbers. Consider the following example.

Example 3

The time taken for a light beam to cross a football pitch is 0.0000004 seconds. Express this time in scientific notation.

We will proceed in a similar way as before.

0.0000004 = 4×0.0000001 = 4× 1
10,000,000

= 4× 1
107 = 4×10−7

So...

Just as a positive exponent on the ten moves the decimal point that many places to the right, a negative exponent
moves the decimal place that many places to the left.
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Example 4

Express the following numbers in scientific notation.

(a) 0.003

(b) 0.000056

(c) 0.00005007

(d) 0.00000000000954

Lets use the method of counting how many places we would move the decimal point before it is after the first
non-zero number. This will give us the value for our negative exponent.

(a) 0.003︸  ︷︷  ︸
3 decimal places

= 3×10−3

(b) 0.000056︸       ︷︷       ︸
5 decimal places

= 5.6×10−5

(c) 0.00005007︸           ︷︷           ︸
5 decimal places

= 5.007×10−5

(d) 0.0000000000954︸                   ︷︷                   ︸
12 decimal places

= 9.54×10−12

Evaluating Expressions in Scientific Notation

When we are faced with products and quotients involving scientific notation, we need to remember the rules for
exponents that we learned earlier. It is relatively straightforward to work with scientific notation problems if you
remember to deal with all the powers of 10 together. The following examples illustrate this.

Example 5

Evaluate the following expressions and write your answer in scientific notation.

(a) (3.2×106) · (8.7×1011)

(b) (5.2×10−4) · (3.8×10−19)

(c) (1.7×106) · (2.7×10−11)

The key to evaluating expressions involving scientific notation is to keep the powers of 10 together and deal with
them separately. Remember that when we use scientific notation, the leading number must be between 1 and 10.
We need to move the decimal point over one place to the left. See how this adds 1 to the exponent on the 10.

(a)

(3.2×106) · (8.7×1011) = 3.2×8.7︸       ︷︷       ︸
27.84

×106×1011︸         ︷︷         ︸
1017

(3.2×106) · (8.7×1011) = 2.784×101×1017

Solution

(3.2×106) · (8.7×1011) = 2.784×1018

(b)
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(5.2×10−4) · (3.8×10−19) = 5.2×3.8︸       ︷︷       ︸
19.76

× 10−4×10−19︸             ︷︷             ︸
10−23

= 1.976 × 101×10−23

Solution

(5.2×10−4) · (3.8×10−19) = 1.976×10−22

(c)

(1.7×106) · (2.7×10−11) = 1.7×2.7︸       ︷︷       ︸
4.59

×106×10−11︸           ︷︷           ︸
10−5

Solution

(1.7×106) · (2.7×10−11) = 4.59×10−5

Example 6

Evaluate the following expressions. Round to 3 significant figures and write your answer in scientific notation.

(a) (3.2×106)÷ (8.7×1011)

(b) (5.2×10−4)÷ (3.8×10−19)

(c) (1.7×106)÷ (2.7×10−11)

It will be easier if we convert to fractions and THEN separate out the powers of 10.

(a)

(3.2×106)÷ (8.7× s1011) =
3.2×106

8.7×1011 Next we separate the powers of 10.

=
3.2
8.7
× 106

1011 Evaluate each fraction (round to 3 s.f.):

= 0.368×10(6−11) Remember how to write scientific notation!

= 3.68×10−1×10−5

Solution

(3.2×106)÷ (8.7×1011) = 3.86×10−6 (rounded to 3 significant figures)

(b)

(5.2×10−4)÷ (3.8×1019) =
5.2×10−4

3.8×10−19 Separate the powers of 10.

=
5.2
3.8
× 10−4

10−19 Evaluate each fraction (round to 3 s.f.).

= 1.37×10((−4)− (−19))

= 1.37×1015
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Solution

(5.2×10−4)÷ (3.8×10−19) = 1.37×1015 (rounded to 3 significant figures)

(c)

(1.7×106)÷ (2.7×10−11) =
1.7×106

2.7×10−11 Next we separate the powers of 10.

=
1.7
2.7
× 106

10−11 Evaluate each fraction (round to 3 s.f.).

= 0.630×10(6−(−11)) Remember how to write scientific notation!

= 6.30×10−1×1017

Solution

(1.7×106)÷ (2.7×10−11) = 6.30×1016 (rounded to 3 significant figures)

Note that the final zero has been left in to indicate that the result has been rounded.

Evaluate Expressions in Scientific Notation Using a Graphing Calculator

All scientific and graphing calculators have the ability to use scientific notation. It is extremely useful to know how
to use this function.

To insert a number in scientific notation, use the [EE] button. This is [2nd] [,] on some TI models.

For example to enter 2.6×105 enter 2.6 [EE] 5.

When you hit [ENTER] the calculator displays 2.6E5 if its set in Scientific mode OR it displays 260000 if its set in
Normal mode.

(To change the mode, press the Mode key)

Example 7

Evaluate (1.7×106)÷ (2.7×10−11) using a graphing calculator.

[ENTER] 1.7 EE 6÷2.7 EE −11 and press [ENTER]
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The calculator displays 6.296296296E16 whether it is in Normal mode or Scientific mode. This is the case because
the number is so big that it does not fit inside the screen in Normal mode.

Solution

(1.7×106)÷ (2.7×10−11) = 6.3̄×1016

Example 8

Evaluate (2.3×106)× (4.9×10−10) using a graphing calculator.

[ENTER] 2.3 EE 6×4.9 EE −10 and press [ENTER]

The calculator displays .001127 in Normal mode or 1.127E−3 in Scientific mode.

Solution

(2.3×106)× (4.9×10−10) = 1.127×10−3

Example 9

Evaluate (4.5×1014)3 using a graphing calculator.

[ENTER] (4.5EE14)3 and press [ENTER].
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The calculator displays 9.1125E43

Solution

(4.5×1014)3 = 9.1125×1043

Solve Real-World Problems Using Scientific Notation

Example 10

The mass of a single lithium atom is approximately one percent of one millionth of one billionth of one billionth of
one kilogram. Express this mass in scientific notation.

We know that percent means we divide by 100, and so our calculation for the mass (in kg) is

1
100
× 1

1,000,000
× 1

1,000,000,000
× 1

1,000,000,000
= 10−2×10−6×10−9×10−9×10−9

Next, we use the product of powers rule we learned earlier in the chapter.

10−2×10−6×10−9×10−9 = 10((−2)+(−6)+(−9)+(−9)) = 10−26 kg.

Solution

The mass of one lithium atom is approximately 1×10−26 kg .

Example 11

You could fit about 3 million E. coli bacteria on the head of a pin. If the size of the pin head in question is
1.2×10−5 m2, calculate the area taken up by one E. coli bacterium. Express your answer in scientific notation.

Since we need our answer in scientific notation it makes sense to convert 3 million to that format first:

3,000,000 = 3×106

Next, we need an expression involving our unknown. The area taken by one bacterium. Call this A.
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3×106 ·A = 1.2×10−5 Since 3 million of them make up the area of the pin-head.

Isolate A:

A =
1

3×106 ·1.2×10−5 Rearranging the terms gives

A =
1.2
3
· 1

106 ×10−5 Then using the definition of a negative exponent

A =
1.2
3
×10−6×10−5 Evaluate combine exponents using the product rule.

A = 0.4×10−11 We cannot, however, leave our answer like this.

Solution

The area of one bacterium A = 4.0×10−12 m2

Notice that we had to move the decimal point over one place to the right, subtracting 1 from the exponent on the 10.

Review Questions

1. Write the numerical value of the following.

(a) 3.102×102

(b) 7.4×104

(c) 1.75×10−3

(d) 2.9×10−5

(e) 9.99×10−9

2. Write the following numbers in scientific notation.

(a) 120,000
(b) 1,765,244
(c) 12
(d) 0.00281
(e) 0.000000027

3. The moon is approximately a sphere with radius r = 1.08×103 miles. Use the formula Surface Area = 4πr2

to determine the surface area of the moon, in square miles. Express your answer in scientific notation, rounded
to 2 significant figures.

4. The charge on one electron is approximately 1.60×10−19 coulombs. One Faraday is equal to the total charge
on 6.02×1023 electrons. What, in coulombs, is the charge on one Faraday?

5. Proxima Centauri, the next closest star to our Sun is approximately 2.5× 1013 miles away. If light from
Proxima Centauri takes 3.7×104 hours to reach us from there, calculate the speed of light in miles per hour.
Express your answer in scientific notation, rounded to 2 significant figures.

Review Answers

1. (a) 310.2
(b) 74.000
(c) 0.00175
(d) 0.000029
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(e) 0.00000000999
2. (a) 1.2×105

(b) 1.765224×1010

(c) 1.2×101

(d) 2.81×10−3

(e) 2.7×10−8

3. 1.5×107 miles2

4. 96,320 or 9.632×104

5. 6.8×108 miles per hour
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3.5 Exponential Functions

Learning objectives

• Evaluate exponential expressions
• Identify the domain and range of exponential functions
• Graph exponential functions by hand and using a graphing utility
• Solve basic exponential equations

Introduction

In this lesson you will learn about exponential functions, a family of functions we have not studied in prior chapters.
In terms of the form of the equation, exponential functions are different from the other function families because the
variable x is in the exponent. For example, the functions f (x) = 2x and g(x) = 100(2)5x are exponential functions.
This kind of function can be used to model real situations, such as population growth, compound interest, or the
decay of radioactive materials. In this lesson we will look at basic examples of these functions, and we will graph
and solve exponential equations. This introduction to exponential functions will prepare you to study applications
of exponential functions later in this chapter.

Evaluating Exponential Functions

Consider the function f (x) = 2x. When we input a value for x, we find the function value by raising 2 to the exponent
of x. For example, if x = 3, we have f (3) = 23 = 8. If we choose larger values of x, we will get larger function values,
as the function values will be larger powers of 2. For example, f (10) = 210 = 1,024.

Now let’s consider smaller x values. If x = 0, we have f (0) = 20 = 1. If x = -3, we have f (−3) = 2−3 =
(1

2

)3
= 1

8 .
If we choose smaller and smaller x values, the function values will be smaller and smaller fractions. For example,
if x = −10, we have f (−10) = 2−10 =

(1
2

)10
= 1

1024 . Notice that none of the x values we choose will result in a
function value of 0. (This is the case because the numerator of the fraction will always be 1.) This tells us that while
the domain of this function is the set of all real numbers, the range is limited to the set of positive real numbers. In
the following example, you will examine the values of a similar function.

Example 1: For the function g(x) = 3x, find g(2), g(4), g(0), g(-2), g(-4).

Solution:

g(2) = 32 = 9

g(4) = 34 = 81

g(0) = 30 = 1

g(−2) = 3−2 = 1
32 =

1
9

g(−4) = 3−4 = 1
34 =

1
81

The values of the function g(x) = 3x behave much like those of f (x) = 2x: if we choose larger values of x, we get
larger and larger function values. If x = 0, the function value is 1. And, if we choose smaller and smaller x values,
the function values will be smaller and smaller fractions. Also, the range of g(x) is limited to positive values.

In general, if we have a function of the form f (x) = ax, where a is a positive real number, the domain of the function
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is the set of all real numbers, and the range is limited to the set of positive real numbers. This restricted range will
result in a specific shape of the graph.

Graphing basic exponential functions

Lets now consider the graph of f (x) = 2x. Above we found several function values, and we began to analyze the
function in terms of large and small values of x. The graph below shows this function, with several points marked in
blue.

Notice that as x increases without bound, the function grows without bound. However, if x decreases without bound,
the function values get closer and closer to 0. Therefore the function is asymptotic to the x-axis. This is the graphical
result of the fact that the range of the function is limited to positive y values. Now let’s consider the graph of g(x) =
3x and h(x) = 4x.

Example 2: Use a graphing utility to graph f (x) = 2x, g(x) = 3x and h(x) = 4x. How are the graphs the same, and how
are they different?

Solution: f (x) = 2x, g(x) = 3x and h(x) = 4x are shown together below.
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The graphs of the three functions have the same overall shape: they have the same end behavior, and they all contain
the point (0, 1). The difference lies in their rate of growth. Notice that for positive x values, h(x) = 4x grows the
fastest and f (x) = 2x grows the slowest. The function values for h(x) = 4x are highest and the function values for
f (x) = 2x are the lowest for any given value of x when x is a positive value. For negative x values, the relationship
changes: f (x) = 2x has the highest function values of the three functions for any given value of x.

Now that we have examined these three parent graphs, we will graph using shifts, reflections, stretches and com-
pressions.

Graphing exponential functions using transformations

Above we graphed the function f (x) = 2x. Now let’s consider a related function: g(x) = 2x + 3. Every function value
will be a power of 2, plus 3. The table below shows several values for the function:

g(x) = 2x +3

TABLE 3.1:

x g(x) = y
−2 2−2 +3 = 1

4 +3 = 3 1
4

−1 2−1 +3 = 1
2 +3 = 3 1

2
0 20 +3 = 1+3 = 4
1 21 +3 = 2+3 = 5
2 22 +3 = 4+3 = 7
3 23 +3 = 8+3 = 11

The function values follow the same kind of pattern as the values for f (x) = 2x. However, because every function
value is 3 more than a power of 2, the horizontal asymptote of the function is the line y = 3. The graph of this
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function and the horizontal asymptote are shown below.

From your study of transformation of functions in the chapter where you were asked to graph quadratic functions,
you may notice that the graph of g(x) = 2x + 3 can be viewed as a vertical shift of the graph of f (x) = 2x. In general,
we can produce a graph of an exponential function with base 2 if we analyze the equation of the function in terms
of transformations. The table below summarizes the different kinds of transformations of f (x) = 2x. The issue of
stretching will be discussed further below the table.

TABLE 3.2:

Equation Relationship to f (x)=2x Range
g(x) = 2x−a, for a > 0 Obtain a graph of g by shifting the

graph of f a units to the right.
y >0

g(x) = 2a ·2x = 2a+x, for a > 0 Obtain a graph of g by shifting the
graph of f a units to the left.

y >0

g(x) = 2x +a, for a > 0 Obtain a graph of g by shifting the
graph of f up a units.

y >a

g(x) = 2x−a, for a > 0 Obtain a graph of g by shifting the
graph of f down a units.

y >a

g(x) = a(2x), for a > 0 Obtain a graph of g by vertically
stretching the graph of f by a factor
of a.

y >0

g(x) = 2ax, for a > 0 Obtain a graph of g by horizontally
compressing the graph of f by a
factor of a.

y >0

g(x) =−2x Obtain a graph of g by reflecting the
graph of f over the x-axis.

y >0

g(x) = 2−x Obtain a graph of g by reflecting the
graph of f over the y-axis.

y >0

As was discussed in prior chapters, a stretched graph could also be seen as a compressed graph. This is not the case
for exponential functions because of the x in the exponent. Consider the function s(x) = 2(2x) and c(x) = 23x. The
first function represents a vertical stretch of f (x) = 2x by a factor of 2. The second function represents a horizontal
compression of f (x) = 2x by a factor of 3. The function c(x) is actually the same as another parent function: c(x) =
23x = (23)x = 8x. The function s(x) is actually the same as a shift of f (x) = 2x: s(x) = 2(2x) = 21 2x = 2x + 1. The graphs
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of s and c are shown below. Notice that the graph of c has a y-intercept of 1, while the graph of s has a y-intercept of
2:

Example 3: Use transformations to graph the functions (a) a(x) = 3x + 2 and (b) b(x) = -3x + 4

Solution:

a. a(x) = 3x+2

This graph represents a shift of y = 3x two units to the left. The graph below shows this relationship between the
graphs of these two functions:

b. b(x) = -3x + 4

This graph represents a reflection over the y-axis and a vertical shift of 4 units. You can produce a graph of b(x)
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using three steps: sketch y = 3x, reflect the graph over the x-axis, and then shift the graph up 4 units. The graph
below shows this process:

While you can always quickly create a graph using a graphing utility, using transformations will allow you to sketch
a graph relatively quickly on your own. If we start with a parent function such as y=3x, you can quickly plot several
points: (0, 1), (2, 9), (-1, 1/3), etc. Then you can transform the graph, as we did in the previous example.

Notice that when we sketch a graph, we choose x values, and then use the equation to find y values. But what if we
wanted to find an x value, given a y value? This requires solving exponential equations.

Solving exponential equations

Solving an exponential equation means determining the value of x for a given function value. For example, if we
have the equation 2x = 8, the solution to the equation is the value of x that makes the equation a true statement. Here,
the solution is x = 3, as 23 = 8.

Consider a slightly more complicated equation 3 (2x + 1) = 24. We can solve this equation by writing both sides of
the equation as a power of 2:

2x+1 = 23

2x+1 = 8
3(2x+1)

3 = 24
3

3(2x+1) = 24

To solve the equation now, recall a property of exponents: if bx = by, then x = y. That is, if two powers of the same
base are equal, the exponents must be equal. This property tells us how to solve:

x = 2
⇒ x+1 = 3
2x+1 = 23

Checking the solution, we see that:
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3(22+1) = 3(23) = 3(8) = 24

Example 4: Solve the equation 56x+10 = 25x−1

Solution: Use the same technique as shown above:

x = -3
4x = -12
4x + 10 = -2
⇒ 6 x + 10 = 2x - 2
56x + 10 = 52x − 2

56x + 10 = (52)x − 1

56x + 10 = 25x − 1

Checkin the solution we see that:

56(−3)+10 = 25−3−1

5−18+10 = 25−4

5−8 = 25−4

1
58 =

1
254

1
390625

=
1

390625

In both of the examples of solving equations, it was possible to solve because we could write both sides of the
equations as a power of the same exponent. But what if that is not possible?

Consider for example the equation 3x = 12. If you try to figure out the value of x by considering powers of 3, you will
quickly discover that the solution is not a whole number. Later in the chapter we will study techniques for solving
more complicated exponential equations. Here we will solve such equations using graphs.

Consider the function y = 3x. We can find the solution to the equation 3x = 12 by finding the intersection of y = 3x and
the horizontal line y = 12. Using a graphing calculator’s intersection capability, you should find that the approximate
solution is x≈ 2.26.
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Example 5: Use a graphing utility to solve each equation:

TABLE 3.3:

a. 23x−1 = 7 b. 6−4x = 28x−5

Solution:

a. 23x−1 = 7

Graph the function y = 23x−1 and find the point where the graph intersects the horizontal line y = 7. The solution
is x≈ 1.27.
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b. 6−4x = 28x−5

Graph the functions y = 6−4x and y = 28x−5 and find their intersection point.

The solution is x≈ 0.27. (Your graphing calculator should show 9 digits: 0.272630365.)

In the examples we have considered so far, the bases of the functions have been positive integers. Now we will
examine a sub-family of exponential functions with a special base: the number e.

The number e and the function y = e x

In your previous studies of math, you have likely encountered the number π. The number e is much like π. First,
both are irrational numbers: they cannot be expressed as fractions. Second, both numbers are transcendental: they
are not the solution of any polynomial with rational coefficients.

Like π, mathematicians found e to be a natural constant in the world. One way to discover e is to consider the
function f (x) =

(
1+ 1

x

)x. The graph of this function is shown below.
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Notice that as x increases without bound, the graph of the function gets closer to a horizontal asymptote around
y≈ 2.7. If you examine several function values for f(x), you will see that this number is not exactly 2.7. In the table
below, let y = f (x).

TABLE 3.4:

x y
0 (not defined)
1 2
2 2.25
5 2.48832
10 2.5937424601
50 2.69158802907
100 2.70481382942
1000 2.71692393224
5000 2.7180100501
10,000 2.71814592683
50,000 2.7181825464614

Around x = 100, the function values pass 2.7, but they will never reach 2.8. As x increase without bound, the output
values of the function get closer and closer to the constant e. The value of e is approximately 2.7182818285. Again,
like π, we have to approximate the value of e because it is irrational.

The number e is used as the base of functions that can be used to model situations that involve growth or decay. For
example, as you will learn later in the chapter, one method of calculating interest on a bank account or investment
uses this number. Here we will examine the function y = ex in order to verify that its graph is similar to the other
exponential functions we have graphed.

The graph below shows y = ex, along with y = 2x and y = 3x.
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The graph of y = ex (in green) has the same shape as the graphs of the other exponential functions. It sits in between
the graphs of the other two functions, and notice that the graph is closer to y = 3x than to y = 2x. This is reasonable
because the value of e is closer to 3 than it is to 2. All three graphs have the same y-intercept: (0, 1). Thus the graph
of this function is clearly a member of the same family, even though the base of the function is an irrational number.

Lesson Summary

This lesson has introduced the family of exponential functions. We have examined values of functions, towards
understanding the behavior of graphs. In general, exponential functions have a horizontal asymptote, though one
end of the function increases (or decreases, if it is a reflection) without bound.

In this lesson we have graphed these functions, solved certain exponential equations using our knowledge of ex-
ponents, and solved more complicated equations using graphing utilities. We have also examined the function
y = ex, which is a special member of the exponential family. In the coming lessons you will continue to learn about
exponential functions, including the inverses of these functions, applications of these functions, and solving more
complicated exponential equations using algebraic techniques.

Points to Think About

1. Why do exponential functions have horizontal asymptotes and not vertical asymptotes?
2. What would the graph of the inverse of an exponential function look like? What would its domain and range

be?
3. How could you solve or approximate a solution to an exponential equation without using a graphing calcula-

tor?

Review Questions

1. For the function f (x) = 23x−1, find f (0), f (2), and f (-2).
2. Graph the functions f (x) = 3x and g(x) = 3x+5 -1. State the domain and range of each function.
3. Graph the functions a(x) = 4x and b(x) = 4−x. State the domain and range of each function.
4. Graph the function h(x) = -2x − 1 using transformations. How is the graph of h(x) related to y = 2x?
5. Solve the equation: 52x+1 = 253x

6. Solve the equation: 4x2+1 = 16x

7. Use a graph to find an approximate solution to the equation 3x = 14
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8. Use a graph to find an approximate solution to the equation 2−x = 72x+9

9. Sketch a graph of the function f (x) = 3x and its inverse. (Hint: You can graph the inverse by reflecting a
function across the line y=x.) Is f one-to-one?

10. Consider the following situation: you inherited a collection of 125 stamps from a relative. You decided to
continue to build the collection, and you vowed to double the size of the collection every year.
a. Write an exponential function to model the situation. (The input of the function is the number of years since
you began building the collection, and the output is the size of the collection.)
b. Use your model to determine how long it will take to have a collection of 10,000 stamps.

Review Answers

1. f(0)=1/2 , f(2)= 32, f(-2)= 1/128
2. The domain of both functions is the set of all real numbers.

The range of f is the set of all real numbers greater than or equal to 0.
The range of g is the set of all real numbers greater than or equal to -1.

3. The domain of both functions is the set of all real numbers.
The range of both functions is the set of all real numbers greater than or equal to 0.

4. If we start with the function y = 2x, the graph of h(x) represents a reflection over the yaxis, and a horizontal
shift 1 unit to the right.
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5. 52x+1 = 253x

52x+1 = 56x

⇒ 2 x+ 1 = 6x
4x = 1
x = 1

4
6. 4x2+1 = 16x

4x2+1 = 42x

⇒ x2 + 1 = 2x
x2 - 2x + 1 = 0
(x - 1) (x - 1) = 0
x = 1

7. x≈ 2.4

8. x≈−3.8
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9. f is a one-to-one function.

10.

a. S(t) = 125 (2t)

b. About 6.2 years

Vocabulary

e
The number e is a transcendental number, often referred to as Euler’s constant. Several mathematicians are
credited with early work on e. Euler was the first to use this letter to represent the constant. The value of e is
approximately 2.71828.

Exponential Function
An exponential function is a function for which the input variable x is in the exponent of some base b, where
b is a real number.

Irrational number
An irrational number is a number that cannot be expressed as a fraction of two integers.

Transcendental number
A transcendental number is a number that is not a solution to any non-zero polynomial with rational roots.

The number is a transcendental number. It is the ratio of the circumference to the diameter in any circle.
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3.6 Finding Equations of Exponential Func-
tions

Here you’ll learn how to determine whether certain models fit data.

An exponential function is a function of the form y = abx, where a 6= 0,b > 0, and b 6= 1. To find an equation of an
exponential function is to find a and b in y = abx.

Example 1:

Find an equation of the form y = abx of the exponential curve that passes through the points (0, 5) and (1,
15) The points (0, 5) and (1, 15) are on the curve so they satisfy the equation y = abx. We first plug in the point (0,
5).

5 = ab0 Substitute 0 for x and 5 for y then solve for a

5 = a

Our equation is now y = 5bx. We then use the second point (1, 15)

15 = 5b1 Substitute 1 for x and 15 for y then solve for

3 = b

y = 5(3)x Write the equation

Example 2:

Find an equation of the form y = abx of the exponential curve that passes through the points (0, 8) and (4, 79)

8 = ab0 Substitute 0 for x and 8 for y then solve for a

8 = a

y = 8bx

79 = 8b4 Substitute 4 for x and 79 for y then solve for b
79
8 = b4

±
(79

8

)1/4
= b We use the positive root since we must have(79

8

)1/4
= b

1.77≈ b

y = 8(1.77)x

In each of the previous examples, the y-intercept (0,a) was given. In the following example, we will approach the
problem differently since the y-intercept is not provided.

Example 3:

Find an equation of the form y = abx of the exponential curve that passe through the points (2, 5) and (3, 10).

10 = ab3 Substitute 3 for x and 10 for y

5 = ab2 Substitute 2 for x and 5 for y
10
5 = ab3

ab2 Divide

2 = b Solve for b
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y = a(2)x

5 = a(2)2 Substitute 2 for x and 5 for y

5 = 4a

1.25 = a

y = 1.25(2)x

Example 4:

You are told that the population of a certain type of bacteria is growing exponentially. To verify this, you conduct
your own experiment. Initially at time t = 0 minute you counted and observed that there are 3 bacteria in a tube.
Two minutes later the number of bacteria is 48. Find an exponential equation to predict the number of bacteria at
any time t. Use this equation to predict the bacteria population in the tube ten minutes later.

After reading the question carefully, our task is to first find an exponential equation. The points (0, 3) and
(2, 48) must satisfy the equation y = abx we are looking for:

3 = ab0 Substitute 0 for x and 3 for y

3 = a

y = 3bx

48 = 3(b)2 Substitute 2 for x and 48 for y

16 = b2 Solve for b2

±4 = b Solve for b

But since b > 0 we pick b = 4. Thus the equation is y = 3(4)x. To find the number of bacteria in the tube after
10 minutes: y = 3(4)10 = 3145728, which is well above 3 million bacteria.

Now suppose you recorded the high temperature for each day of the year. If you wanted to model this data with a
function, how would you decide whether to use a linear model or exponential model. Could your graphing calculator
help you decide? If so, what buttons would you have to push on your calculator in order to get relevant information?
In this Concept, you’ll learn about using linear and exponential models for data sets such as the one described.

Guidance

So far you have learned how to graph two very important types of equations.

• Linear equations in slope-intercept form: y = mx+b
• Exponential equations of the form: y = a(b)x

In real-world applications, the function that describes some physical situation is not given. Finding the function is
an important part of solving problems. For example, scientific data such as observations of planetary motion are
often collected as a set of measurements given in a table. One job for a scientist is to figure out which function best
fits the data. In this Concept, you will learn some methods that are used to identify which function describes the
relationship between the dependent and independent variables in a problem.

Using Differences to Determine the Model

By finding the differences between the dependent values (output), we can determine if the model is linear, exponen-
tial, or neither.

• If the difference is the same value, the model will be linear
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• If the difference is the same ratio, the model will be exponential

Example A

The first difference is the same value (3). This data can be modeled using a linear regression line.

The equation to represent this data is y = 3x+2.

When we look at the difference of the y-values, we must make sure that we examine entries for which the x-values
increase by the same amount.

Using Ratios to Determine the Model

By taking the ratio of the values, one can determine whether the model is exponential.

If the ratio of dependent values is the same, then the data is modeled by an exponential equation, as in the example
below.
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Example B

The equation to represent this data is y = 4(3)x

Guided Practice

Determine whether the function in the given table is linear or exponential.

x y
0 5
1 10
3 20
4 25
6 35

Solution:

At first glance, this function might not look linear because the difference in the y-values is not always the same.
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However, we see that the difference in y-values is 5 when we increase the x-values by 1, and it is 10 when we
increase the x-values by 2. This means that the difference in y-values is always 5 when we increase the x-values by
1. Therefore, the function is linear.

The equation is modeled by y=5x+5.

Review Questions

1. Some values of functions, f, g, h, and k are provided in the table. Determine if each function is linear or
exponential and find equations for each.

Find an equation of the form y = abx, of the exponential curve that contains the given pair of points. Round the
values of a and b to 2 decimal places if necessary. Verify your results on a graphing calculator.

2. (0, 4) and (1, 12)

3. (0, 7) and (1, 35)

4. (0, 1) and (1, 6)

5. (0, 2) and (1, 14)

6. (1, 18) and (2, 108)

7. (1, 45) and (2, 405)

8. (1, 70) and (2, 700)

9. (1, 16) and (2, 128)

10. (1, 8) and (3, 128)

11. (1, 22) and (3, 88)

12. (2, 72) and (3, 216)

13. (2, 147) and (3, 1029)

14. (0, 3) and (5, 70)

15. (5, 4) and (7, 17)

Answers:

1. f (x) = 80(1
2)

x

g(x) = -40x + 80

h(x) = 10x + 5

. k(x) = 5(3)x
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2. y = 4(3)x

3. y = 7(5)x

4. y = (6)x

5. y = 2(7)x

6. y = 3(6)x

7. y = 5(9)x

8. y = 7(10)x

9. y = 2(8)x

10. y = 2(4)x

11. y = 11(2)x

12. y = 8(3)x

13. y = 3(7)x

14. y = 3(0.88)x

15. y = 0.11(2.06)x
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3.7 Composite Functions and Inverse Func-
tions

Learning objectives

• Evaluate and find composite functions.
• Find the inverse of a function
• Determine if a function is invertible
• State the domain and range for a function and its inverse
• Graph functions and their inverses
• Use composition to verify if two functions are inverses.

Introduction

In this chapter, we will focus on two related functions: exponential functions,and logarithmic functions. These
two functions have a special relationship with one another: they are inverses of each other. In this first lesson we
will develop the idea of inverses, both algebraically and graphically, as background for studying these two types of
functions in depth. We will begin with a familiar, every-day example of two functions that are inverses.

Composite Functions

A composite function or composition of functions is a function made up of more than one function. A composite
function can be thought of as a function inside another function. The notation used for composition of functions is:

( f ◦g)(x) = f (g(x))

To calculate a composite function, we evaluate the inner function and then substitute the result into the outer function.
We can say the output of the inner function, g(x), becomes the input into the outer function.

Sometimes we find composite function values if the initial input is a given value or real number. In this case the
composite function value is a real number. However, if the initial input is a variable or variable expression, the
composite function is another function. Let’s look at examples of both cases.

Example 1: Find the composite function values ( f ◦g)(3) and (g◦ f )(3), given f (x) = x2−2x+1 and g(x) = x−5.

a) ( f ◦g)(3) = f (g(3))

We start by determining the inner function value, g(3).

g(3) = 3−5 =−2

Now substitute −2 for g(3) in the composite function since g(3) = 2.

f (g(3)) = f (−2)

Now we find the function value f (−2).
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f (−2) = (−2)2−2(−2)+1 = 4+4+1 = 9

Therefore, f (g(3)) = 9

b) (g◦ f )(3) = g( f (3))

We start by determining the inner function value, f (3).

f (3) = (3)2−2(3)+1 = 9−6+1 = 4

Now substitute 4 for f (3) in the composite function since f (3) = 4.

g( f (3)) = g(4)

Now we find the function value g(4).

g(4) = 4−5 =−1

Therefore, g( f (3)) =−1

Notice the result is a real number value.

Now we will look at a composition of functions that results in another function.

Example 2: Find the composite functions ( f ◦g)(x) and (g◦ f )(x), given f (x) = x2−2x+1 and g(x) = x−5.

a) ( f ◦g)(x) = f (g(x))

Notice we can not evaluate g(x) because we are not given an input for g(x). As a result, the input
into f (x) is g(x).

f (g(x)) = f (x−5) = (x−5)2−2(x−5)+1 = x2−10x+25−2x+10+1 = x2−12x+36

f (g(x)) = x2−12x+36

Notice the composite function is another function.

b) (g◦ f )(x) = g( f (x))

Notice we can not evaluate f (x) because we are not given an input for f (x). As a result, the input
into g(x) is f (x).

g( f (x)) = g(x2−2x+1) = (x2−2x+1)−5 = x2−2x−4

g( f (x)) = x2−2x−4

Notice the composite function is another function.
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Functions and inverses

In the United States, we measure temperature using the Fahrenheit scale. In other countries, people use the Celsius
scale. The equation C = 5

9(F − 32) can be used to find C, the Celsius temperature, given F, the Fahrenheit
temperature. If we write this equation using function notation, we have t(x) = 5

9(x−32). The input of the function is
a Fahrenheit temperature, and the output is a Celsius temperature. For example, the freezing point on the Fahrenheit
scale is 32 degrees. We can find the corresponding Celsius temperature using the function:

t(32) = 5
9(32−32) = 5

9 ·0 = 0

This function allows us to convert a Fahrenheit temperature into Celsius, but what if we want to convert from Celsius
to Fahrenheit?

Consider again the equation above: C = 5
9(F−32). We can solve this equation to isolate F:

TABLE 3.5:

C = 5
9(F−32)

9
5C = 9

5 ·
5
9(F−32)

9
5C = F−32
9
5C+32 = F

If we write this equation using function notation, we get f (x) = 9
5 x+32. For this function, the input is the Celsius

temperature, and the output is the Fahrenheit temperature. For example, if x = 0, f (0) = 9
5(0)+32 = 0+32 = 32.

Now consider the functions t(x) = 5
9(x−32) and f (x) = 9

5 x+32 together. The input of one function is the output of
the other. This is an informal way of saying that these functions are inverses. Formally, the inverse of a function is
defined as follows:

Inverse Function

Functions f (x) and g(x) are inverses if

f (g(x)) = x and g( f (x)) = x which can also be written f ◦g = x and g◦ f = x.

The following notation is used to indicate inverse functions:

If f (x) and g(x) are inverses, then

f (x) = g−1(x) and g(x) = f−1(x) with can also be written f = g−1 and g = f−1.

Note: f−1(x) does not equal 1
f (x) .

Informally, we define the inverse of a function as the relation we obtain by switching the domain and range of the
function. Because of this definition, you can find an inverse by switching the roles of x and y in an equation. For
example, consider the function g(x) = 2x. This is the line y = 2x . If we switch x and y, we get the equation x = 2y .
Dividing both sides by 2, we get y = 1

2 x. Therefore the functions g(x) = 2x and y = 1
2 x are inverses. Using function

notation, we can write y = 1
2 x as g−1(x) = 1

2 x.

Example 3: Find the inverse of each function.

a. f (x) = 5x−8

b. f (x) = x3

a. First write the function using y = notation, then interchange x and y:
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Solution:

f (x) = 5x−8⇒ y = 5x−8

Interchanging x and y: x = 5y−8

Then isolate y:

x = 5y−8 (Add 8 to both sides.)

x+8 = 5y (Divide both sides by 5.)

y = 1
5 x+ 8

5

So the inverse is:

f−1(x) = 1
5 x+ 8

5 (Written using inverse function notation)

b. First write the function using y = notation, the interchange x and y.

f (x) = x3⇒ y = x3

Interchanging x and y: x = y3

Then isolate y:

y = 3√x (Cube root both sides.)

y = 3√x

So the inverse is:

f−1(x) = 3√x (Written using inverse function notation)

Because of the definition of inverse, the graphs of inverses are reflections across the line y = x. Recall in an earlier
example we found a function t(x) that converted degrees Fahrenheit to degree Celsius, and another function f(x)
that converted degrees Celsius to degrees Fahrenheit. They were inverses of each other. The graph below shows
t(x) = 5

9(x−32) and f (x) = 9
5 x+32 on the same graph, along with the reflection line y = x.

A note about graphing with software or a graphing calculator: if you look at the graph above, you can see that the
lines are reflections over the line y = x. However, if you do not view the graph in a window that shows equal scales
of the x- and y-axes, the graph might not look like this.
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FIGURE 3.1

Before continuing, there are two other important things to note about inverses. First, remember that the ’ -1’ is not
an exponent, but a symbol that represents an inverse. Second, not every function has an inverse that is a function.
In the examples we have considered so far, we inverted a function, and the resulting relation was also a function.
However, some functions are not invertible; that is, following the process of "inverting" them does not produce a
relation that is a function. We will return to this issue below when we examine domain and range of functions and
their inverses. First we will look at a set of functions that are invertible.

Inverses of 1-to-1 functions

Consider again example 1. We began with the function f (x) = x3, and we found the inverse f−1(x) = 3√x. The
graphs of these functions are show below.

178

http://www.ck12.org


www.ck12.org Chapter 3. Exponential Functions

The function f (x) = x3 is an example of a one-to-one function, which is defined as follows:

TABLE 3.6:

One to one
A function is one-to-one if and only if every element of its domain corresponds to exactly one element of its
range.

The linear functions we examined above are also one-to-one. The function y = x2, however, is not one-to-one. The
graph of this function is shown below.

You may recall that you can identify a relation as a function if you draw a vertical line through the graph, and the
line touches only one point. Notice then that if we draw a horizontal line through y = x2, the line touches more than
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one point. Therefore if we inverted the function, the resulting graph would be a reflection over the line y = x, and
the inverse would not be a function. It fails the vertical line test.

You may recall that you can identify a relation as a function if you draw a vertical line through the graph, and the
line touches only one point. Notice then that if we draw a horizontal line through y = x2, the line touches more than
one point. Therefore if we inverted the function, the resulting graph would be a reflection over the line y = x, and
the inverse would not be a function. It fails the vertical line test.

The function y = x2 is therefore not a one-to-one function. A function that is one-to-one will be invertible. You can
determine this graphically by drawing a horizontal line through the graph of the function. For example, if you draw
a horizontal line through the graph of f (x) = x3, the line will only touch one point on the graph, no matter where you
draw the line.

Example 4: Graph the function f (x) = 1
3 x+2. Use a horizontal line test to verify that the function is invertible.

Solution: The graph below shows that this function is invertible. We can draw a horizontal line at any y value, and
the line will only cross f (x) = 1

3 x+2 once.

In summary, a one-to-one function is invertible. That is, if we invert a one-to-one function, its inverse is also a
function. Now that we have established what it means for a function to be invertible, we will focus on the domain
and range of inverse functions.

Domain and range of functions and their inverses

Because of the definition of inverse, a function’s domain is its inverse’s range, and the inverse’s domain is the
functions range. This statement may seem confusing without a specific example.

Example 3: State the domain and range of the function and its inverse:

Function: {(1, 2), (2, 5), (3, 7)}

Solution: The inverse of this function is the set of points {(2, 1), (5, 2), (7, 3)}

The domain of the function is {1, 2, 3}. This is also the range of the inverse.
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The range of the function is {2, 5, 7}. This is also the domain of the inverse.

The linear functions we examined previously, as well as f (x) = x3, all had domain and range both equal to the set of
all real numbers. Therefore the inverses also had domain and range equal to the set of all real numbers. Because the
domain and range were the same for these functions, switching them maintained that relationship.

Also, as we found above, the function y = x2 is not one-to-one, and hence it is not invertible. That is, if we invert
it, the resulting relation is not a function. We can change this situation if we define the domain of the function in
a more limited way. Let f (x) be a function defined as follows: f (x) = x2, with domain limited to all real numbers
greater than or equal to 0. Then the inverse of the function is the square root function: f−1(x) =

√
x

Example 5: Define the domain for the function f (x) = (x - 2)2 so that f is invertible.

Solution: The graph of this function is a parabola. We need to limit the domain to one side of the parabola.
Conventionally in cases like these we choose the positive side; therefore, the domain is limited to all real numbers
greater than or equal to 2.

Inverse functions and composition

In the examples we have considered so far, we have taken a function and found its inverse. We can also analyze two
functions and determine whether or not they are inverses. Recall the formal definition from earlier.

Two functions f (x) and g(x) are inverses if and only if f (g(x)) = x and g( f (x)) = x..

This definition is perhaps easier to understand if we look at a specific example. Lets use two functions that we have
established as inverses: f (x) = 2x and g(x) = 1

2 x. Lets also consider a specific x value. Let x = 8. Then we have
f (g(8)) = f

(1
2(8)

)
= f (4) = 2(4) = 8. Similarly we could establish that g( f (8)) = 8. Notice that there is nothing

special about x = 8. For any x value we input into f, the same value will be output by the composed functions:

f (g(x)) = f
(1

2 x
)
= 2

(1
2 x
)
= x

g( f (x)) = g(2x) = 1
2(2x) = x

Example 6: Use composition of functions to determine if f (x) = 2x + 3 and g(x) = 3x - 2 are inverses.

Solution: The functions are not inverses.

We only need to check one of the compositions:
f (g(x)) = f (3x−2) = 2(3x−2)+3 = 6x−4+3 = 6x−1 6= x

Lesson Summary

In this lesson we have defined the concept of inverse, and we have examined functions and their inverses, both
algebraically and graphically. We established that functions that are one-to-one are invertible, while other functions
are not necessarily invertible. (However, we can redefine the domain of a function such that it is invertible.) In the
remainder of the chapter we will examine two families of functions whose members are inverses.
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Points To Think About

1. Can a function be its own inverse? If so, how?
2. Consider the other function families you learned about in previous chapters. What do their inverses look like?
3. How is the rate of change of a linear function related to the rate of change of the functions inverse?

Review Questions

1. Find the inverse of the function f (x) = 1
2 x−7.

2. Use the horizontal line test to determine if the function f (x) = x+ 1
x is invertible or not.

3. Use composition of functions to determine if the functions are inverses: g(x) = 2x−6 and h(x) = 1
2 x+3.

4. Use composition of functions to determine if the functions are inverses: f (x) = x+2 and p(x) = x− 1
2 .

5. Given the function f (x) = (x+1)2, how should the domain be restricted so that the function is invertible?
6. Consider the function f (x) = 3

2 x+4.
a. Find the inverse of the function.
b. State the slope of the function and its inverse. What do you notice?

7. Given the function {(0, 5), (1, 7), (2, 13), (3, 19)}
a. Find the inverse of the function.
b. State the domain and range of the function.
c. State the domain and range of the inverse.

8. Consider the function a(x) = |x|.

(a) Graph the inverse.
(b) Based on the graph, is the function invertible? Explain.

9. Consider the function f(x) = c, where c is a real number. What is the inverse? Is f invertible? Explain.
10. A store sells fabric by the length. Red velvet goes on sale after Valentines day for $4.00 per foot.

a. Write a function to model the cost of x feet of red velvet.
b. What is the inverse of this function?
c. What does the inverse represent?

Review Answers

1. f−1(x) = 2x+14

2.
The function is not invertible.

3. The functions are inverses.
g(h(x)) = g

(1
2 x+3

)
= 2

(1
2 x+3

)
−6 = x+6−6 = x

h(g(x)) = h(2x−6) = 1
2(2x−6)+3 = x−3+3 = x

4. The functions are not inverses.
f (p(x)) = (x− 1

2)+2 = x+ 3
2 6= x

5. The domain should be restricted so that x≥−1.
6. a. y = 2

3 x− 8
3

b. The slope of the function is / f rac32 and the slope of the inverse is / f rac23. The slopes are reciprocals.
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7. a. {(5, 0), (7, 1), (13, 2), (19, 3)}
b. Domain: {0, 1, 2, 3} and Range: {5, 7, 13, 19}
c. Domain: {5, 7, 13, 19} and Range: {0, 1, 2, 3}

8.

(a) See graph above.
(b) The function is not invertible. Several ways to justify: the inverse fails the vertical line test; the original

function fails the horizontal line test.

9. The function f is a horizontal line with equation y = c. The domain is the set of all real numbers, and the range
is the single value c. Therefore the inverse would be a function whose domain is c and the range is all real
numbers. This is the vertical line x = c. This is not a function. So f (x) = c is not invertible.

10. a. C(x) = 4x
b. C−1x = 1

4 x
c. The inverse function tells you the number of feet you bought, given the amount of money you spent.

Vocabulary

Inverse
The inverse of a function is the relation obtained by interchanging the domain and range of a function.

Invertible
A function is invertible if its inverse is a function.

One-to-one
A function is one-to-one if every element of its domain is paired with exactly one element of its range.

183

http://www.ck12.org


www.ck12.org

CHAPTER 4 Logarithmic Functions
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4.6 LOGARITHMIC SCALES
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4.1 Logarithmic Functions

Learning objectives

• Translate numerical and algebraic expressions between exponential and logarithmic form.
• Evaluate logarithmic functions.
• Determine the domain of logarithmic functions.
• Graph logarithmic functions.
• Solve logarithmic equations.

Introduction

In the previous lesson we examined exponential expressions and functions. Now we will consider another represen-
tation for the same relationships involved in exponential expressions and functions.

Consider the function y= 2x. Every x-value of this function is an exponent. Every y-value is a power of 2. As
you learned in an earlier lesson, functions that are one-to-one have inverses that are functions. This is the case
with exponential functions. If we take the inverse of y = 2x (by interchanging the domain and range) we obtain this
equation: x = 2y . In order to write this equation such that y is expressed as a function of x, we need a different
notation.

The solution to this problem is found in the logarithm. John Napier originally introduced the logarithm to 17th

century mathematicians as a technique for simplifying complicated calculations. While todays technology allows us
to do most any calculations we could imagine, logarithmic functions continue to be a focus of study in mathematics,
as a useful way to work with exponential expressions and functions.

Changing Between Exponential and Logarithmic Expressions

Every exponential expression can be written in logarithmic form. For example, the equation x=2y is written as
follows: y=log2x. In general, the equation logbn = a is equivalent to the equation ba=n. That is, b is the base, a is the
exponent, and n is the power, or the number you obtain by raising b to the power of a. Sometimes n is also referred
to as the argument of the logarithm. Notice that the exponential form of an expression emphasizes the power, while
the logarithmic form emphasizes the exponent. More simply put, a logarithm (or log for short) is an exponent.
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We can write any exponential expression in logarithmic form.

Example 1: Rewrite each exponential expression as a log expression.

TABLE 4.1:

a.34=81 b. b4x=52

Solution:

a. In order to rewrite an expression, you must identify its base, its exponent, and its power. The 3 is the base, so it
is placed as the subscript in the log expression. The 81 is the power, and so it is placed after the log. Thus we
have: 34 = 81 is the same as log381 = 4 .

b. The b is the base, and the expression 4x is the exponent, so we have:logb52 = 4x . We say, log base b of 52,
equals 4x.

To read this expression, we say the logarithm base 3 of 81 equals 4. This is equivalent to saying 3 to the 4th power
equals 81.

We can also express a logarithmic statement in exponential form.

Example 2: Rewrite the logarithmic expressions in exponential form.

TABLE 4.2:

a. log10100 = 2 b. logbw = 5

Solution:

a. The base is 10, and the exponent is 2, so we have: 102=100
b. The base is b, and the exponent is 5, so we have: b5=w .

Perhaps the most common example of a use of a logarithm is the Richter scale, which measures the magnitude of an
earthquake. The magnitude is actually the logarithm base 10 of the amplitude of the quake. That is, m=log10A . This
means that, for example, an earthquake of magnitude 4 is 10 times as strong as an earthquake with magnitude 3. We
can see why this is true of we look at the logarithmic and exponential forms of the expressions: An earthquake of
magnitude 3 means 3=log10A. The exponential form of this expression is 103=A. Thus the amplitude of the quake
is 1,000. Similarly, a quake with magnitude 4 has amplitude 104=10,000. We will return to this exampl in a future
lesson.

Evaluating Logarithmic Functions

As noted above, a logarithmic function is the inverse of an exponential function. Consider again the function
y=2x and its inverse x=2y. Above, we rewrote the inverse x=2y as y=log2x. If we want to emphasize the fact
that the log equation represents a function, we can write the equation as f (x)=log2x. To evaluate this function, we
choose values of x and then determine the corresponding y values, or function values.

Example 3: Evaluate the function f (x)=log2x for the values:
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TABLE 4.3:

a.x=2 b.x=1 c.x=-2

Solution:

a. If x=2 , we have:

TABLE 4.4:

f (x)=log2x
f (2)=log22

To determine the value of log22, you can ask yourself: 2 to what power equals 2? Answering this question is often
easy if you consider the exponential form: 2?=2. The missing exponent is 1. So f(2)=log22=1.

b. If x=1 , we have:

TABLE 4.5:

f (x)=log2x
f (1)=log21

As we did in (a), we can consider exponential form: 2?=1. The missing exponent is 0. So we have f(1)=log21=0.
c. If x=-2, we have:

TABLE 4.6:

f (x)=log2x
f (-2)= log2-2

Again, consider the exponential form: 2?=-2. There is no such exponent. Therefore in the set of real numbers, f (-
2)=log2-(2) does not exist as a real valued function..

Example 3c illustrates an important point: there are restrictions on the domain of a logarithmic function. For the
function f (x)=log2x, x cannot be a negative number. Therefore we can state the domain of this function as: the set
of all real numbers greater than 0. Formally, we can write it as a set: {x ∈ |x > 0}. In general, the domain of a
logarithmic function is restricted to those values that will make the argument of the logarithm non-negative.

For example, consider the function f (x)=log3(x-4). If you attempt to evaluate the function for x values of 4 or less,
you will find that the function values do not exist. Therefore the domain of the function is {x ∈ |x > 4}. The domain
of a logarithmic function is one of several key issues to consider when graphing.

Graphing Logarithmic Functions

Because the function f (x)=log2x is the inverse of the function g(x)=2x, the graphs of these functions are reflections
over the line y = x. The figure below shows the graphs of these two functions:
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We can see that the functions are inverses by looking at the graph. For example, the graph of g(x)=2x contains the
point (1, 2), while the graph of f (x)=log2x contains the point (2, 1).

Also, note that while that the graph of g(x)=2x is asymptotic to the x-axis, the graph of f (x)=log2x is asymptotic to
the y-axis. This behavior of the graphs gives us a visual interpretation of the restricted range of g and the restricted
domain of f.

When graphing log functions, it is important to consider x- values across the domain of the function. In particular,
we should look at the behavior of the graph as it gets closer and closer to the asymptote. Consider f (x)=log2x for
values of x between 0 and 1.

If x=1/8, then f (1/8)=log2(1/8)=-3 because 2−3=1/8.
If x=1/4, then f (1/4)=log2(1/4)=-2 because 2−2=1/4.
If x=1/2, then f (1/2)=log2(1/2)=-1 because 2−1=1/2.

From these values you can see that if we choose x values that are closer and closer to 0, the y values decrease without
bound. In terms of the graph, these values show us that the graph gets closer and closer to the y-axis. Formally we
say that the vertical asymptote of the graph is x = 0.

Example 4: Graph the function f (x)=log4x and state the domain and range of the function.

Solution: The function f (x)=log4x is the inverse of the function g(x) = 4x. We can sketch a graph of f (x) by evaluating
the function for several values of x, or by reflecting the graph of g over the line y = x.

If we choose to plot points, it is helpful to organize the points in a table: Let y = f (x) = log4(x)

TABLE 4.7:

x y
1/4 -1
1 0
4 1
16 2
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The graph is asymptotic to the y-axis, so the domain of f is the set of all real numbers that are greater than 0. We
can write this as a set:{x ∈ |x > 0} . While the graph might look as if it has a horizontal asymptote, it does in fact
continue to rise. The range is the set of all real numbers.

A note about graphing calculators: You can use a graphing calculator to graph logarithmic functions, but many
calculators will only allow you to use base 10 or base e. However, after the next lesson you will be able to rewrite
any logarithm as a log with base 10 or base e.

In this section we have looked at graphs of logarithmic functions of the form f (x)=logbx. Now we will consider the
graphs of other forms of logarithmic equations.

Graphing Logarithmic Functions Using Transformations

As you saw in the previous lesson, you can graph exponential functions by considering the relationships between
equations. For example, you can use the graph of f (x)=2x to sketch a graph of g(x)=2x + 3. Every y value of g(x) is
the same as a y value of f (x), plus 3. Therefore we can shift the graph of f (x) up 3 units to obtain a graph of g(x).

We can use the same relationships to efficiently graph log functions. Consider again the log function f (x)=log2x.
The table below summarizes how we can use the graph of this function to graph other related function.

TABLE 4.8:

Equation Relationship to f (x)=log2x Domain
g(x)=log2(x - a), for a >0 Obtain a graph of g by shifting the

graph of f a units to the right.
x >a

g(x) = log2(x+a) for a >0 Obtain a graph of g by shifting the
graph of f a units to the left.

x >-a

g(x)=log2(x) + a for a >0 Obtain a graph of g by shifting the
graph of f up a units.

x >0

g(x)=log2(x)-a for a >0 Obtain a graph of g by shifting the
graph of f down a units.

x >0

g(x)=alog2(x) for a >0 Obtain a graph of g by vertically
stretching the graph of f by a factor
of a.

x >0

g(x)=-alog2(x) , for a >0 Obtain a graph of g by vertically
stretching the graph of f by a factor
of a, and then reflecting the graph
over the x-axis.

x >0

g(x)=log2(-x) Obtain a graph of g by reflecting the
graph of f over the y-axis.

x <0
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Example 5: Graph the functions f (x)=log2(x),g(x) = log2(x) + 3, and h(x) = log2(x + 3)

Solution: The graph below shows these three functions together:

Notice that the location of the 3 in the equation makes a difference! When the 3 is added to log2x , the shift is
vertical. When the 3 is added to the x, the shift is horizontal. It is also important to remember that adding 3 to the x
is a horizontal shift to the left. This makes sense if you consider the function value when x = -3:

h(-3)=log2(-3 + 3)=log20 = undefined

This is the vertical asymptote! To graph these functions, we evaluated them for certain values of x. But what if we
want to know what the x value is for a particular y value? This means that we need to solve a logarithmic equation.

Solving Logarithmic Equations

In general, to solve an equation means to find the value(s) of the variable that makes the equation a true statement.
To solve log equations, we have to think about what log means.

The equation log2x=5 means that 25 = x . So the solution to the equation is x = 25 = 32.
Consider the equation log2x=5 . What is the exponential form of this equation?

We can use this strategy to solve many logarithmic equations.

Example 6: Solve each equation for x:

TABLE 4.9:

a.log4x = 3 b. log5(x + 1) = 2 c. 1 + 2log3(x - 5) =
7

Solution:

a. Writing the equation in exponential form gives us the solution: x = 43 = 64.

b. Writing the equation in exponential form gives us a new equation: 52 = x + 1. We can solve this equation for x:
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52 = x+1

25 = x+1

24 = x

x = 24

c. First we have to isolate the log expression:

1+2log3(x−5) = 7

2log3(x−5) = 6

log3(x−5) = 3

Now we can solve the equation by rewriting it in exponential form:

log3(x−5) = 3

33 = x−5

27 = x−5

32 = x

x = 32

We can also solve equations in which both sides of the equation contain logs. For example, consider the equation
log2(3x-1)=log2(5x - 7). Because the logarithms have the same base (2), the arguments of the log (the expressions
3x - 1 and 5x - 7) must be equal. So we can solve as follows:

log2(3x−1) = log2(5x−7)

3x−1 = 5x−7

+7 =+7

3x+6 = 5x

−6 =−6

6 = 3x

3 = x

x = 3

Example 7: Solve for x: log2(9x)=log2(3x + 8)

Solution: The log equation implies that the expressions 9x and 3x + 8 are equal:

TABLE 4.10:

log2(9x) = log2(3x+8)

9x = 3x+8
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TABLE 4.10: (continued)

log2(9x) = log2(3x+8)

−3x =−3x

6x = 8

x =
8
6

x =
4
3

Lesson Summary

In this lesson we have defined the logarithmic function as the inverse of the exponential function. When working
with logarithms, it helps to keep in mind that a logarithm is an exponent. For example, 3 = log28 and 23 = 8 are
two forms of the same numerical relationship among the three numbers 2, 3, and 8. The 2 is the base, the 3 is the
exponent, and 8 is the 3rd power of 2.

Because logarithmic functions are the inverses of exponential functions, we can use our knowledge of exponential
functions to graph logarithmic functions. You can graph a log function either by reflecting an exponential function
over the line y = x, or by evaluating the function and plotting points. In this lesson you learned how to graph parent
graphs such as y =log2x and y = log4x , as well as how to use these parent graphs to graph more complicated log
functions. When graphing, it is important to keep in mind that logarithmic functions have restricted domains. Each
graph will have a vertical asymptote.

We can also use our knowledge of exponential relationships to solve logarithmic equations. In this lesson we solved
2 kinds of logarithmic equations. First, we solved equations by rewriting the equations in exponential form. Second,
we solved equations in which both sides of the equation contained a log to the same base. To solve these equations,
we used the following rule:

logb f (x) = logbg(x)⇒ f (x) = g(x)

Points to Think About

1. What methods can you use to graph logarithmic functions?
2. What methods can you use to solve logarithmic equations?
3. What forms of log equations can you solve using the methods in this lesson? Can you write an equation that

cannot be solved using these methods?

Review Questions

Write the exponential statement in logarithmic form.
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1. 32 = 9
2. z4 = 10

Write the logarithmic statement in exponential form.

3. log525 = 2

4. log4
1
6 =−1

5. Complete the table of values for the function f (x) = log3x

xy = f(x)1/91/3139

6. se the table above to graph f (x)=log3x. State the domain and range of the function.

7. Consider g(x) = -log3(x- 2)

a. How is the graph of g(x) related to the graph of f (x) = log3x?

b. Graph g(x) by transforming the graph of f (x).

8. Solve each logarithmic equation:

a. log3 9x = 4

b. 7 + log2x = 11 (Hint: subtract 7 from both sides first.)

9. Solve each logarithmic equation:

TABLE 4.11:

a. log5 6x = -1 b. log5 6x = log5(2x + 16) c. log5 6x = log5(3x - 10)

10. Explain why the equation in 9c has no solution.

Review Answer

1. log3(9)=2
2. logz(10)=4
3. 52 = 25
4. 6−1 = 1

6

TABLE 4.12:

x y
1/9 -2
1/3 -1
1 0
3 1
9 2

6.
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D: All real numbers >0

R: All real numbers.

7. a. The graph of g(x) can be obtained by shifting the graph of f(x) 2 units to the right, and reflecting it over
the x-axis.

b.

8. The solutions are:

TABLE 4.13:

a. x = 9 b. x = 16

9.

The solutions are:

TABLE 4.14:

a. x = 1/30 b. x = 4 c. no solution

10. When we solve 6x=3x-10 we find that x=-10/3, a value outside of the domain. Because there is no other x value
that satisfies the equation, there is no solution.

Vocabulary

Argument
The expression inside a logarithmic expression. The argument represents the power in the exponential rela-
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tionship.

Asymptote
An asymptote is line whose distance to a given curve tends to zero. An asymptote may or may not intersect
its associated curve.

Domain
The domain of a function is the set of all values of the independent variable (x) for which the function is
defined.

Evaluate
To evaluate a function is to identify a function value (y) for a given value of the independent variable (x).

Function
A function is a relation between a domain (set of x values) and range (set of y values) in which every element
of the domain is paired with one and only one element of the range. A function that is one to one is a function
in which every element of the domain is paired with exactly one y value.

Logarithm
The exponent of the power to which a base number must be raised to equal a given number.

Range
The range of a function is the set of all function values, or values of the dependent variable (y).
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4.2 Properties of Logarithms

Learning objectives

• Use properties of logarithms to write logarithmic expressions in different forms.
• Evaluate common logarithms and natural logarithms.
• Use the change of base formula and a scientific calculator to find the values of logs with any bases.

Introduction

In the previous lesson we defined the logarithmic function as the inverse of an exponential function, and we evaluated
log expressions in order to identify values of these functions. In this lesson we will work with more complicated log
expressions. We will develop properties of logs that we can use to write a log expression as the sum or difference
of several expressions, or to write several expressions as a single log expression. We will also work with logs with
base 10 and base e, which are the bases most often used in applications of logarithmic functions.

Properties of Logarithms

Because a logarithm is an exponent, the properties of logs are the same as the properties of exponents. Here we will
prove several important properties of logarithms.

Property 1: logb(xy) = logb x + logb y

Proof: Let logb x = n and logb y = m.

Rewrite both log expressions in exponential form:
logb x = n→ bn = x
logb y = m→ bm = y

Now multiply x and y: xy = bn × bm = bn + m

Therefore we have an exponential statement: bn + m = xy.
The log form of the statement is: logb xy = n + m.
Now recall how we defined n and m:

logbxy = n + m = logb x + logby.

Therefore:

logb (xy) = logbx+ logby

Property 2: logb

(
x
y

)
= logbx− logby

We can prove property 2 analogously to the way we proved property 1.

Proof: Let logb x = n and logb y = m.
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Rewrite both log expressions in exponential form:
logb x = n→ bn = x
logb y = m→ bm = y

Now divide x by y: x
y =

bn

bm = bn−m

Therefore we have an exponential statement: bn−m = x
y .

The log form of the statement is: logb

(
x
y

)
= n−m.

Now recall how we defined n and m:
logb

(
x
y

)
= n−m = logbx− logby.

Therefore:

logb

(
x
y

)
= logbx− logby

Property 3: logb xn = n logb x

The proof of the third property relies on another property of logs that we can derive by thinking about the definition
of a log. Consider the expression log2 213. What does this expression mean?

The exponential form of log2 213 = ? is 2? = 213. Looking at the exponential form should convince you that the
missing exponent is 13. That is, log2 213 = 13. In general, logb bn = n. This property will be used in the proof of
property 3.

Proof (of Property 3):

Let logb x = w.
The exponential form of this log statement is bw = x.
If we raise both sides of this equation to the power of n, we have (bw)n = xn.

Using the power property of exponents, this equation simplifies to bwn = xn.

If two expressions are equal, then the logs of both expressions are equal:

logb bwn = logb xn

Now consider the value of the left side of the equation: logb bwn.
Earlier we had reasoned that in general: logb(bn)=n.
Following this reasoning, we have logb(bwn)=wn.
Previously, we had shown that logb(bwn)=logb(xn).
By substitution, it follows that: logb(xn)=wn.
At this start of this proof, we had defined w: logb(x)=w.
By substitution: logb(xn)=(logb(x))n
From the cummative property of multiplication: logb(xn)=nlogb(x).
This completes the proof.

We can use these properties to rewrite log expressions.

Expanding expressions

Using the properties we have derived above, we can write a log expression as the sum or difference of simpler
expressions. Consider the following examples:

1. log2 (8x) = log2 8 + log2x = 3 + log2x
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2. log3

(
x2

3

)
= log3x2− log33 = 2log3x−1

Using the log properties in this way is often referred to as "expanding". In the first example, expanding the log
allowed us to simplify, as log2 8 = 3. Similarly, in the second example, we simplified using the log properties, and
the fact that log3 3 = 1.

Example 1: Expand each expression:

TABLE 4.15:

a. log525x2y b. log10
(100x

9b

)
Solution:

a. log5 25x2 y = log5 25 + log5x2 + log5 y = 2 + 2 log5x + log5 y
b.

TABLE 4.16:

log10
(100x

9b

)
= log10100x− log109b
= log10100+ log10x− [log109+ log10b]
= 2+ log10x− log109− log10b

Just as we can write a single log expression as a sum and difference of expressions, we can also write expanded
expressions as a single expression.

Rewriting or Combining Logarithms into a Single Logarithm

To combine logarithms by rewriting them as a single logarithm, we will use the same properties we used to expand
logarithmic expressions. Consider the expression log6 8 + log6 27. Alone, each of these expressions does not have
an integer value. The value of log6 8 is between 1 and 2; the value of log6 27 is also between 1 and 2. If we rewrite
the expression, we get:

log6 8 + log6 27 = log6 (8 × 27) = log6 216 = 3

We can also condense or rewrite logarithms with algebraic expressions and rewrite them as a single logarithmic
expression. This will be useful later for solving logarithmic equations.

Example 2: Condense each expression into a single logarithm:

TABLE 4.17:

a. 2log3 x + log3 5x - log3 (x + 1) b. log2 (x2 - 4) - log2 (x + 2)

Solution:

a. 2log3x+ log35x− log3(x+1) = log3x2 + log35x− log3(x+1)

= log3(x2(5x))− log3(x+1)

198

http://www.ck12.org


www.ck12.org Chapter 4. Logarithmic Functions

= log3

(
5x3

x+1

)
b. log2(x2−4)− log2(x+2) = log2

(
x2−4
x+2

)
= log2

(
(x+2)(x−2)

x+2

)
= log2(x−2)

It is important to keep in mind that a log expression may not be defined for certain values of x. First, the argument of
the log must be positive. For example, the expressions in example 2b above are not defined for x ≤ 2 (which allows
us to "divide out" (x+2) without worrying about the condition x 6= -2).

Second, the argument must be defined. For example, in example 2a above, the expression
(

5x3

x+1

)
is undefined if x =

-1.

The log properties apply to logs with any real base. Next we will examine logs with base 10 and base e, which are
the most commonly used bases for logs (though only one is actually called “common”).

Common logarithms and natural logs

A common logarithm is a log with base 10. We can evaluate a common log just as we evaluate any other log. A
common log is usually written without a base. So when we see log x without a base, it means the same thing as
log10x.

Example 3: Evaluate each log

TABLE 4.18:

a. log 1 b. log 10 c. log
√

10

Solution:

c. log
√

10 = 1
2 because 101/2 =

√
10

b. log 10 = 1, as 101 = 10
a. log 1 = 0, as 100 = 1.

As noted in an earlier lesson, logarithms were introduced in order to simplify calculations. After Napier introduced
the logarithm, another mathematician, Henry Briggs, proposed that the base of a logarithm be standardized as 10.
Just as Napier had labored to compile tables of log values (though his version of the logarithm is somewhat different
from what we use today), Briggs was the first person to publish a table of common logs. This was in 1617!

Until recently, tables of common logs were included in the back of math textbooks. Publishers discontinued this
practice when scientific calculators became readily available. A scientific calculator will calculate the value of a
common log to 8 or 9 digits. Most calculators have a button that says LOG. For example, if you have TI graphing
calculator, you can simply press LOG, and then a number, and the calculator will give you a log value up to 8 or 9
decimal places. For example, if you enter LOG(7), the calculator returns .84509804. This means that 10.84509804 ≈
7. If we want to judge the reasonableness of this value, we need to think about powers of 10. Because 101 = 10,
log(7) should be less than 1.

Example 4: For each log value, determine two integers between which the log value should lie. Then use a calculator
to find the approximate value of the log.
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TABLE 4.19:

a. log 50 b. log 818

Solution:

a. log 50
The value of this log should be between 1 and 2, as 101 = 10, and 102 = 100.

Using a calculator, you should find that log 50 ≈ 1.698970004.
b. log 818
The value of this log should be between 2 and 3, as 102 = 100, and 103 = 1000.
Using a calculator, you should find that log 818 ≈ 2.912753304.

The calculators ability to produce log values is an example of the huge benefit that technology can provide. Only
a few years ago, the calculations in the previous example would have each taken several minutes, while now they
only take several seconds. While most people might not calculate log values in their every day lives, scientists and
engineers are grateful to have such tools to make their work faster and more efficient.

Along with the LOG key on your calculator, you will find another logarithm key that says LN. This is the abbreviation
for the natural log, the log with base e. Natural logs are written using “ln” instead of “log.” That is, we write the
expression loge x as In x. How you evaluate a natural log depends on the argument of the log. You can evaluate
some natural log expressions without a calculator. For example, ln e = 1, as e1 = e. To evaluate other natural log
expressions requires a calculator. Consider for example ln 7. Recall that e ≈ 2.7. This tells us that ln 7 should be
slightly less than 2, as (2.7)2 = 7.29. Using a calculator, you should find that ln 7 ≈ 1.945910149.

Example 5: Find the value of each natural log.

TABLE 4.20:

a. ln100 b. ln
√

e

Solution:

a. ln 100 is between 4 and 5. You can estimate this by considering powers of 2.7, or powers of 3: 34 = 81, and 35 =
243.

Using a calculator, you should find that ln 100 ≈ 4.605171086.
b. Recall that a square root is the same as an exponent of 1/2. Therefore ln

√
e = ln(e1/2) = 1/2

You may have noticed that the common log and the natural log are the only log buttons on your calculator. We can
use either the common log or the natural log to find the values of logs with other bases.

Change of Base

Consider the log expression log3 35. The value of this expression is approximately 3 because 33 = 27. In order to
find a more exact value of log335, we can rewrite this expression in terms of a common log or natural log. Then we
can use a calculator.

Let’s consider a general log expression, logb x = y. This means that by = x. Recall that if two expressions are equal,
then the logs of the expressions are equal. We can use this fact, and the power property of logs, to write logb x in
terms of common logs.
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TABLE 4.21:

by = x Justificiation
logby = logx The logs of the expressions are equal

TABLE 4.22:

by = x⇒ logby = logx

TABLE 4.23:

⇒ ylogb = logx Use the power property of logs
⇒ y = logx

logb Divide both sides by logb
⇒ logbx = logx

logb Substitute logbx = y

The final equation, logbx = logx
logb , is called the change of base formula. Notice that the proof did not rely on the fact

that the base of the log is 10. We could have used a natural log. Thus another form of the change of base formula
is logbx = lnx

lnb .

Note that we could have used a log with any base, but we use the common log and the natural log so that we can use
a calculator to find the value of an expression. Consider again log3 35. If we use the change of base formula, and
then a calculator, we find that

log335 = log35
log3 ≈ 3.23621727.

Example 6: Estimate the value, and then use the change of base formula to find the value of log2 17.

Solution: log2 17 is close to 4 because 24 = 16 and 25 = 32. Using the change of base formula, we have log217 =
log17
log2 . Using a calculator, you should find that the approximate value of this expression is 4.087462841.

Lesson Summary

In this lesson we have developed and used properties of logarithms, including a formula that allows us to calculate
the value of a log expression with any base. Out of context, it may seem difficult to understand the value of these
kind of calculations. However, as you will see in later lessons in this chapter, we can use exponential and logarithmic
functions to model a variety of phenomena.

To Think About

1. Why is the common log called common? Why 10?
2. Why would you want to estimate the value of a log before using a calculator to find its exact value?
3. What kind of situations might be modeled with a logarithmic function?

Review Questions

1. Expand the expression: logb 5x2

2. Expand the expression: log3 81x5
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3. Condense the expression using properties of logarithms to rewrite as a single logarithm: log(x + 1) + log(x -
1)

4. Condense the expression using properties of logarithms to rewrite as a single logarithm: 3ln(x) + 2ln (y) -
ln(5x - 2)

5. Evaluate the expressions:
a. log 1000
b. log 0.01

6. Evaluate the expressions:
a. ln e4

b. ln
( 1

e9

)
7. Use the change of base formula to find the value of log5 100.
8. What is the difference between logb xn and (logbx)n?
9. Condense and rewrite the expression as a single logarithm to simplify: 3 log 2 + log 125

10. Is this equation true for any values of x and y? log2 (x + y) = log2x + log2y
If so, give the values. If not, explain why not.

Review Answers

1. logb 5 + 2 logbx
2. 4 + 5 log3x
3. log (x2 - 1)
4. ln

(
x3y2

5x−2

)
5. a. 3

b. -2
6. a. 4

b. -9
7. log100

log5 ≈ 2.86
8. The first expression is equivalent to n logbx. The second expression is the nth power of the log.
9. log 1000 = 3

10. Since log2(xy) = log2x + log2y, log2 (x + y) = log2x + log2y if and only if x + y = xy. The solutions to this
equation are all positive values of x and y for which x + y = xy. For example, x = 3 and y = 1.5

Vocabulary

Common logarithm
A common logarithm is a log with base 10. The log is usually written without the base.

Natural logarithm
A natural log is a log with base e. The natural log is written as ln.

Scientific calculator
A scientific calculator is an electronic, handheld calculator that will do calculations beyond the four operations
(+,−,×,÷), such as square roots and logarithms. Graphing calculators will do scientific operations, as well
as graphing and equation solving operations.
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4.3 Exponential and Logarithmic Models and
Equations

Learning objectives

• Analyze data to determine if it can be represented by an exponential or logarithmic model.
• Use a graphing calculator to find an exponential or logarithmic model, and use a model to answer questions

about a situation.
• Solve exponential and logarithmic equations using properties of exponents and logarithms.
• Find approximate solutions to equations using a graphing calculator.

Introduction

So far in this chapter we have evaluated exponential and logarithm expressions, and we have graphed exponential
and logarithmic functions. In this lesson you will extend what you have learned in two ways. First, we will introduce
the idea of modeling real phenomena with logarithmic and exponential functions. Second, we will solve logarithmic
and exponential equations. While you have already solved some equations in previous lessons, now you will be
able to solve more complicated equations. This lesson will provide you with further tools for the applications of
logarithmic and exponential functions that will be the focus of the remainder of the chapter.

Exponential Models

Consider the following example: the population of a small town was 2,000 in the year 1950. The population
increased over time, as shown by the values in the table:

TABLE 4.24:

Year ( since 1950 ) Population
0 2000
5 2980
10 4450
20 9900
30 22,000
40 50,000

If you plot these data points, you will see that the growth pattern is non-linear:
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In many situations, population growth can be modeled with an exponential function (this is because population
grows as a percentage of the current population, i.e. 8% per year). In an upcoming lesson, you will learn how to
create such models using information from a given situation. Here, we will focus on creating models using data and
a graphing calculator.

The population data from the example above can be modeled with an exponential function, but the function is not
unique. That is, there is more than one way to write a function to model this data. In the steps below you will see
how to use a graphing calculator to find a function of the form y = a(bx) that fits the data in the table.

Technology Note
Using a TI-83/84 graphing calculator to find an exponential function that best fits a set of data
To enter data, press STAT, and then Option 1: Edit. Then enter the following into L1 and L2.

Now press the STAT button, and move to the right to the CALC menu. Scroll down to option 10: ExpReg. Press
the ENTER button, and you will return to the home screen. You should see ExpReg on the screen. As long
as the numbers are in L1 and L2, the calculator will proceed to find an exponential function to fit the data you
listed in List L1 and List L2. You should see on the home screen the values for a and b in the exponential
function (See figure below). Therefore the function y = 1992.7(1.0837)x is an approximate model for the data.

2. Plotting the data and the equation
To view plots of the data points and the equation on the same screen, do the following.

a. First, press Y= button and clear any equations.
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You can type in the equation above, or to get the equation from the calculator, do the following:

b. Enter the above rounded-off equation in Y1, or use the following procedure to get the full equation from
the calculator: put the cursor in Y1, press the VARS button, followed by 5: Statistics. Then go to the
EQ menu, and press 1: ReqEQ. This should place the equation in Y1 (see figure below).

c. Now press the 2nd button, choose [Stat Plot] (above the Y+ button) and complete the items as shown in
the figure below.

d. Now set your window. (Hint: use the range of the data to choose the window the figure below shows our
choices.)

e. Press the GRAPH button and you will to see the function and the data points as shown in the figure below.

3. Comparing the real data with the modeled results
It looks as if the data points lie on the function. However, using the TRACE function you can determine how close

the modeled points are to the real data. Press the TRACE button to enter the TRACE mode. Then press the
right arrow to move from one data point to another. Do this until you land on the point with value Y=22000.
To see the corresponding modeled value, press the up or down arrow. See the figure below. The modeled value
is approximately 22197, which is quite close to the actual data. You can verify any of the other data points
using the same method.
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Now that we have the equation y = 1992.7(1.0837)x to model the situation, we can estimate the population for any
years that were not in the original data set. If we choose x values between 0 and 40, it is called interpolation. If
we choose other x values outside of this domain, it is called extrapolation. Interpolation is, in a sense, a safer way
of estimating population, because it is within the data points that we have, and does not require that we think about
the end behavior of the function. For example, if we extrapolate to the year 1930, this means x = -20. The function
value is 399. However, if the town was founded in 1940, then this data value does not make any sense. Similarly, if
we extrapolate to the year 2000, we have x = 50. The function value is 110,711. However, if the towns pattern of
population growth shifted (perhaps due to some economic change), this estimation could be highly inaccurate. As
noted above, you will study exponential growth, as well as other exponential models, in the next two lessons. Now
we turn to logarithmic models.

Logarithmic Models

Consider another example of population growth:

Table 2

TABLE 4.25:

Year Population
1 2000
5 4200
10 6500
20 8800
30 10500
40 12500

If we plot this data, we see that the growth is not quite linear, and it is not exponential either.

Just as we found an exponential model in the previous example, here we can find a logarithmic function to model
this data. First enter the data in the table in L1 and L2. Then press STAT to get to the CALC menu. This time choose
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option 9: LnReg. You should get the function y = 930.4954615 + 2780.218173 ln x. If you view the graph and the
data points together, as described in the earlier Technology Note, you will see that the graph of the function does not
touch the data points, but models the general trend of the data.

Note about technology: you can also do this using an Excel spreadsheet. Enter the data in a worksheet, and create
a scatterplot by inserting a chart. After you create the chart, from the chart menu, choose “add trendline.” You will
then be able to choose the type of function. Note that if you want to use a logarithmic function, the domain of your
data set must be positive numbers. The chart menu will actually not allow you to choose a logarithmic trendline if
your data include zero or negative x values. The image that follows is a chart with a logarithmic trendline.

Solve Exponential Equations

Given an exponential model of some phenomena, such as population growth, you may want to determine a particular
input value that would produce a given function value. Let’s say that a function P(x) = 2000(1.05)x models the
population growth for a town. What if we want to know when the population reaches 20,000?

To answer this equation, we must solve the equation 2000(1.05)x = 20,000. We can solve this equation by isolating
the power (1.05)x and then using one of the log properties:

TABLE 4.26:

2000(1.05)x = 20,000 Divide both sides of the equation by 2000
(1.05)x = 10 Take the common log of both sides
log(1.05)x = log10 Use the power property of logs
xlog(1.05) = log10 Evaluate log10
xlog(1.05) = 1
x = 1

log(1.05) ≈ 47

Divide both sides by log(1.05)

Use a calculator to estimate log(1.05)

We can use these same techniques to solve any exponential equation.

Example 1: Solve each exponential equation

TABLE 4.27:

a. 2x + 7 = 19 b. 35x − 1 = 16
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Solution:

a. 2x +7 = 19

−7−7
2x = 12
log2x = log12
xlog2 = log12
x = log12

log2 ≈ 3.58

b. 35x−1 = 16

log35x−1 = log16
(5x−1)log3 = log16
5x−1 = log16

log3

5x = log16
log3 +1

x =
log16
log3 +1

5
x≈ 0.705

Solve Logarithmic Equations

In the previous lesson we solved two forms of log equations. Now we can solve more complicated equations, using
our knowledge of log properties. For example, consider the equation log2 (x) + log2 (x - 2) = 3. We can solve this
equation using a log property.

TABLE 4.28:

log2 (x) + log2 (x - 2) = 3
log2 (x(x - 2)) = 3 logb x + logb y = logb(xy)
log2 (x2 - 2x) = 3 Write the equation in exponential form
23 = x2 - 2x
x2 - 2x - 8 = 0 Solve the resulting quadratic
(x - 4) (x + 2) = 0
x = -2, 4

The resulting quadratic has two solutions. However, only x = 4 is a solution to our original equataion, as log2(-2) is
undefined. We refer to x = -2 as an extraneous solution.

Example 2: Solve each equation

TABLE 4.29:

a. log (x + 2) + log 3 = 2 b. ln (x + 2) - ln (x) = 1

Solution:

a. log (x + 2) + log 3 = 2
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TABLE 4.30:

log (3(x + 2)) = 2 logb x + logb y = logb (xy)
log (3x + 6) = 2 Simplify the expression 3(x+2)
102 = 3x + 6 Write the log expression in exponential form
100 = 3x + 6
3x = 94 Solve the linear equation
x = 94/3

b. ln (x + 2) - ln (x) = 1

TABLE 4.31:

ln
( x+2

x

)
= 1 logbx− logby = logb

(
x
y

)
e1 = x+2

x Write the log expression in exponential form.
ex = x+2 Multiply both sides by x.
ex− x = 2 Factor out x.
x(e−1) = 2 Isolate x.
x = 2

e−1

The solution above is an exact solution. If we want a decimal approximation, we can use a calculator to find that x≈
1.16. We can also use a graphing calculator to find an approximate solution, as we did in lesson 2 with exponential
equations. Consider again the equation ln (x + 2) - ln (x) = 1. We can solve this equation by solving a system:{

y = ln(x+2)− ln(x)
y = 1

If you graph the system on your graphing calculator, as we did in lesson 2, you should see that the curve and the
horizontal line intersection at one point. Using the INTERSECT function on the CALC menu press the 2nd button
followed by [CALC]), you should find that the x coordinate of the intersection point is approximately 1.16. This
method will allow you to find approximate solutions for more complicated log equations.

Example 3. Use a graphing calculator to solve each equation:

TABLE 4.32:

a. log(5 - x) + 1 = log x b. log2(3x + 8) + 1 = log3 (10 - x)

Solution:

a. log(5 - x) + 1 = log x

The graphs of y = log (5 - x) + 1 and y = log x intersect at x ≈ 4.5454545
Therefore the solution of the equation is x ≈ 4.54.

b. log2 (3x + 8) + 1 = log3 (10 - x)

First, in order to graph the equations, you must rewrite them in terms of a common log or a natural log. The
resulting equations are: y = log(3x+8)

log2 + 1 and y = log(10−x)
log3 . The graphs of these functions intersect at x ≈

-1.87. This value is the approximate solution to the equation.
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Lesson Summary

This lesson has introduced the idea of modeling a situation using an exponential or logarithmic function. When a
population or other quantity has a steep increase over time, it may be modeled with an exponential function. When
a population has a steep increase, but then slower growth, it may be modeled with a logarithmic function. (In a
later lesson you will learn about a third option.) We have also examined techniques of solving exponential and
logarithmic equations, based on our knowledge of properties of logarithms. The key property to remember is the
power property:

logbxn = n logbx

Using this property allows us to turn an exponential function into a linear function, which we can then solve in order
to solve the original exponential function.

In the remaining lessons in this chapter, you will learn about several different real phenomena that are modeled with
exponential and logarithmic equations. In these lessons you will also use the techniques of equation solving learned
here in order to answer questions about these phenomena.

To Think About

1. What kinds of situations might be modeled with exponential functions or logarithmic functions?
2. What restrictions are there on the domain and range of data if we use these functions as models?
3. When might an exponential or logarithmic equation have no solution?
4. What are the advantages and disadvantages of using a graphing calculator to solve exponential and logarithmic

equations?

Review Questions

For questions 1 - 5, solve each equation using algebraic methods. Give an exact solution.

1. 2 (5x− 4) + 7 = 43
2. 4x = 73x− 5

3. log(5x + 200) + log 2 = 3
4. log3 (4x + 5) - log3x = 2
5. ln (4x + 1) - ln (2x) = 3
6. Use a graphing utility to solve the equation in #4.
7. Use a graphing utility to solve the equation log(x2 -3) = log (x + 5)
8. In example 3b, the solution to the log equation log2(3x + 8) + 1 = log3 (10 - x) was found to be x ≈ - 1.87.

One student read this example, and wondered how the value of x could be negative, given that you cannot take
a log of a negative number. How would you explain to this student why the solution is valid?

9. The data set below represents a hypothetical situation: You invest $2000 in a money market account, and you
do not invest more money or withdraw any from the account. Table 3

TABLE 4.33:

Time since you invested (in years) Amount in account
0 2000
2 2200
5 2500

210

http://www.ck12.org


www.ck12.org Chapter 4. Logarithmic Functions

TABLE 4.33: (continued)

Time since you invested (in years) Amount in account
10 3300
20 4500

a. Use a graphing utility to find an exponential model for the data. b. Use your model to estimate the value of
the account after the 8thyear. c. At this rate, much money would be in the account after 30 years? d. Explain
how your estimate in part c might be inaccurate. (What might happen after 20 years?)

10. The data set below represents the growth of a plant. Table 4

TABLE 4.34:

Time since planting (days) Height of plant (inches)
1 .2
4 .5
5 .57
10 1.2
12 1.3
14 1.4

a. Use a graphing utility to find a logarithmic equation to model the data. b. Use your model to estimate
the height of the plant after 15 days. Compare this estimate to the trend in the data. c. Give an example of
an x value for which the model does not make sense.

11. In the lesson, the equation log(5 - x) + 1 = log x was solved using a graph. Solve this equation algebraically in
order to (a) verify the approximate solution found in the lesson and (b) give an exact solution.

Review Answers

1. x = log518+4 or x = log18
log5 +4

2. x = −5log7
log4−3log7

3. x = 60
4. x = 1
5. x = 1

2e3−4
6. The function y = log3 (4x + 5) - log3 x intersects the line y = 2 at the point (1, 2)
7. The graphs intersect twice, giving 2 solutions: x ≈ -2.37, x ≈ 3.37
8. The value of can be negative as long as the argument of the log is positive. In this equation, the arguments are

3x+8 and 10-x. Neither expression takes on a negative value for x ≈ -1.87
9. a. y = 2045.405(1.042)x b. About $2840 c. About $7003 d. After that much time, you may decide to withdraw

the money to spend or to invest in something with more potential for growth.
10. a. y = 0.0313 + .4780 ln x b. The model gives 1.33 inches. The data would suggest the plant is at least 1.4

inches tall. c. The model does not make sense for negative x values. Also, at some point the plant could die.
This reality puts an upper bound on x.

11. log (5 - x) + 1 = log x log (5 - x) - log x + 1 = 0 log(5 - x) - log x = -1 log
(5−x

x

)
= −1 10−1 = 5−x

x 0.1 =
5−x

x 0.1 x = 5 - x 1.1 x = 5 x = 5
1.1 = 50

11 = 4 6
11 = 4.54
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Vocabulary

Extraneous solution
An extraneous solution is a solution to an equation used to solve an initial equation that is not a solution to the
initial equation. Extraneous solutions occur when solving certain kinds of equations, such as log equations, or
square root equations.

Extrapolation
To extrapolate from data is to create new data points, or to predict, outside of the domain of the data set.

Interpolation
To interpolate is to create new data points, or to predict, within the domain of the data set, but for points not
in the original data set.
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4.4 Compound Interest

Learning objectives

• Calculate compound interest, including continuous compounding.
• Compare compound interest situations.
• Determine algebraically and graphically the time it takes for an account to reach a particular value.

Introduction

In the previous lesson, you learned about modeling growth using an exponential function. In this lesson we will
focus on a specific example of exponential growth: compounding of interest. We will begin with the case of simple
interest, which refers to interest that is based only on the principal, or initial amount of an investment or loan. Then
we will look at what it means for interest to compound. In the simplest terms, compounding means that interest
accrues (you gain interest on an investment, or owe more on a loan) based on the principal you invested, as well
as on interest you have already accrued. As you will soon see, compound interest is a case of exponential growth.
In this lesson we will look at specific examples of compound interest, and we will write equations to model these
specific situations.

Simple interest over time

As noted above, simple interest means that interest accrues based on the principal of an investment or loan. The
simple interest is calculated as a percent of the principal. The formula for simple interest is, in fact, simple:

The variable P represents the principal amount, r represents the interest rate, and t (expressed in decimal form) repre-
sents the amount of time the interest has been accruing. For example, say you borrow $2,000 from a family member,
and you insist on repaying with interest. You agree to pay 5% interest, and to pay the money back in 3 years. The
interest you will owe will be 2000(0.05)(3) = $300. This means that when you repay your loan, you will pay $2300.
Note that the interest you pay after 3 years is not 5% of the original loan, but 15%, as you paid 5% of $2000 each
year for 3 years.

Now lets consider an example in which interest is compounded. Say that you invest $2000 in a bank account, and it
earns 5% interest annually. How much is in the account after 3 years?

In order to determine how much money is in the account after three years, we have to determine the amount of
money in the account after each year. The table below shows the calculations for one, two, and three years of this
investment:

TABLE 4.35:

Year Principal + interest
After one year 2000 + 2000(0.05) = 2000 + 100 = $2100
After 2 years 2100 + 2100(0.05) = 2100 + 105 = $2205
After 3 years 2205 + 2205(0.05) = 2205 + 110.25 = $2315.25

Therefore, after three years, you will have $2315.25 in the account, which means that you will have earned $315.25
in interest. With simple interest, you would have earned $300 in interest. Compounding results in more interest
because the principal on which the interest is calculated increased each year. For example, in the second year shown
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in the table above, you earned 5% of 2100, not 5% of 2000, as would be the case of simple interest. The main
idea here is that compounding creates more interest because you are earning interest on interest, and not just on the
principal.

But how much more?

You might look at the above example and say, its only $15.25. Remember that we have only looked at one example,
and this example is a small one: in the grand scheme of investing, $2000 is a small amount of money, and we have
only looked at the growth of the investment for a short period of time. For example, if you are saving for retirement,
you could invest for a period of 30 years or more, and you might invest several thousand dollars each year.

The formulas and methods for calculating retirement investments are more complicated than what we will do here.
However, we can use the above example to derive a formula that will allow us to calculate compound interest for
any number of years.

The compound interest formula

To derive the formula for compound interest, we need to look at a more general example. Lets return to the previous
example, but instead of assuming the investment is $2000, let the principal of the investment be P dollars. The key
idea is that each year you have 100% of the principal, plus 5% of the previous balance. The table below shows the
calculations of this more general investment.

TABLE 4.36:

Year Principal + interest New principal
1 P + P (.05) = 1.00P + .05P = 1.05P 1.05P
2 1.05P + .05 (1.05P) = 1.05P [1+

.05] = 1.05P (1.05) = (1.05)2P
(1.05)2 P

3 (1.05)2 P + .05 (1.05)2 P = (1.05)2

P [1 + .05] = (1.05)2 P [1.05]
= (1.05)3P

(1.05)3 P

Notice that at the end of every year, the amount of money in the investment is a power of 1.05, times P, and that the
power corresponds to the number of years. Given this pattern, you might hypothesize that after 4 years, the amount
of money is (1.05)4P.

We can generalize this pattern to a formula. As above, we let P represent the principal of the investment. Now,
let t represent the number of years, and r represent the interest rate. Keep in mind that 1.05 = 1+0.05. So we can
generalize:

A(t) = P(1 + r)t

This function will allow us to calculate the amount of money in an investment, if the interest is compounded each
year for t years.

Example 1: Use the formula above to determine the amount of money in an investment after 20 years, if you invest
$2000, and the interest rate is 5% compounded annually.

Solution:

A(t) = P(1 + r)t

A(20) = 2000(1.05)20

A(20) ≈ $5306.60
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The investment will be worth $5306.60.

In the above example, we found the value of this investment after a particular number of years. If we graph the
function A(t) = 2000(1.05)t , we can see the values for any number of years.

If you graph this function using a graphing calculator, you can determine the value of the investment by tracing
along the function, or by pressing the TRACE button on your graphing calculator and then entering an x value. You
can also choose an investment value you would like to reach, and then determine the number of years it would take
to reach that amount. For example, how long will it take for the investment to reach $7,000?

As we did earlier in the chapter, we can find the intersection of the exponential function with the line y = 7000.

You can see from this figure that the line and the curve intersect at a little less than x = 26. Therefore it would take
almost 26 years for the investment to reach $7000.

You can also solve for an exact value:

TABLE 4.37:

2000(1.05)t = 7000
(1.05)t = 7000

2000 Divide both sides by 2000 and simplify the right side of
the equation.

(1.05)t = 3.5 Take the ln of both sides (you can use any type of log,
but ln or log base 10 will allow you to use a calculator.)

ln(1.05)t = ln3.5
t[ln(1.05)] = ln3.5 Use the power property of logs
t = ln3.5

ln1.05 ≈ 25.68 Divide both sides by ln 1.05

215

http://www.ck12.org


4.4. Compound Interest www.ck12.org

The examples we have seen so far are examples of annual compounding. In reality, interest is often compounded
more frequently, for example, on a monthly basis. In this case, the interest rate is divided amongst the 12 months.
The formula for calculating the balance of the account is then slightly different:

A(t) = P
(
1+ r

12

)12t

Notice that the interest rate is divided by 12 because 1/12th of the rate is applied each month. The variable t in the
exponent is multiplied by 12 because the interest is calculated 12 times per year.

In general, if interest is compounded n times per year, the formula is:

A(t) = P
(
1+ r

n

)nt

Example 2: Determine the value of each investment.

a. You invest $5000 in an account that gives 6% interest, compounded monthly. How much money do you
have after 10 years?

b. You invest $10,000 in an account that gives 2.5% interest, compounded quarterly. How much money do you
have after 10 years?

Solution:

a. $5000, invested for 10 years at 6% interest, compounded monthly. Monthly compounding means that
interest is compounded twelve times per year. So in the equation, n = 12.

A(t) = P
(
1+ r

n

)nt

A(10) = 5000
(
1+ .06

12

)12·10

A(10) = 5000(1.005)120

A(10)≈ 9096.98

The investment account balance is $9096.08 after 10 years.
b. $10000, invested for 10 years at 2.5% interest, compounded quarterly. Quarterly compounding means that

interest is compounded four times per year. So in the equation, n = 4.
A(t) = P

(
1+ r

n

)nt

A(10) = 6000
(
1+ .025

4

)4·10

A(10) = 6000(1.00625)40

A(10)≈ 12,830.30
The investment account balance is $12,830.30 after 10 years.

In each example, the value of the investment after 10 years depends on three quantities: the principal of the
investment, the number of compoundings per year, and the interest rate. Next we will look at an example of one
investment, but we will vary each of these quantities.

The power of compound interest

Consider the investment in Example 1: $2000 was invested at an annual interest rate of 5%. We modeled this
situation with the equation A(t) = 2000(1.05)t . We can use this equation to determine the amount of money in the
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account after any number of years. As we saw above, the value of the account grows exponentially. You can see
how fast the investment grows if we compare it to linear growth. For example, if the same investment earned simple
interest, the value of the investment after t years could be modeled with the function B(t) = 2000 + 2000(.05)t. We
can simplify this to be: B(t) = 100t + 2000. The exponential function and this linear function are shown here.

Notice that if we look at these investments over a long period of time (30 years are shown in the graph), the values
look very close together for x values less than 10. For example, after 5 years, the compound interest investment
is worth $2552.60, and the simple interest investment is worth $2500. But, after 20 years, the compound interest
investment is worth $5306.60, and the simple interest investment is worth $4,000. After 20 years, simple interest
has doubled the amount of money, while compound interest has resulted in 2.65 times the amount of money.

The main idea here is that an exponential function grows faster than a linear one, which you can see from the graphs
above. But what happens to the investment if we change the interest rate, or the number of times we compound per
year?

Example 3: Compare the values of the investments shown in the table. If everything else is held constant (the
principal, the number of times compounded per year, and time in years), how does the interest rate influence the
value of the investment?

TABLE 4.38:

Principal r n t
$4,000 .02 12 8
$4,000 .05 12 8
$4,000 .10 12 8
$4,000 .15 12 8
$4,000 .22 12 8

Solution: Using the compound interest formula A(t) = P
(
1+ r

n

)nt , we can calculate the value of each investment.
In all cases, we have A(8) = 4000

(
1+ r

12

)12·8.

TABLE 4.39:

Principal r n t A
$4,000 .02 12 8 $4693.42
$4,000 .05 12 8 $5962.34
$4,000 .10 12 8 $8872.70
$4,000 .15 12 8 $13182.05
$4,000 .22 12 8 $22882.11
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As we increase the interest rate, the value of the investment increases. It is part of every day life to want to find
the highest interest rate possible for a bank account (and the lowest possible rate for a loan!). Let’s look at just
how fast the value of the account grows. Remember that each calculation in the table above started with A(8) =
4000

(
1+ r

12

)12·8. Notice that can be written as a function of r, the interest rate. We can rewrite this as a function of

x, using x to represent the interest rate: f (x) = 4000
(
1+ x

12

)96. The graph of this function is shown below:

Notice that while this function is not exponential, it does grow quite fast. As we increase the interest rate, the value
of the account increases very quickly.

Example 4: Compare the values of the investments shown in the table. If everything else is held constant (principal,
rate, and time), how does the compounding influence the value of the investment?

TABLE 4.40:

Principal r n t
$4,000 .05 1 (annual) 8
$4,000 .05 4 (quarterly) 8
$4,000 .05 12 (monthly) 8
$4,000 .05 365 (daily) 8
$4,000 .05 8760 (hourly) 8

Solution: Again, we use the compound interest formula. For this example, the n is the quantity that changes:
A(8) = 4000

(
1+ .05

n

)8n

TABLE 4.41:

Principal r n t A
$4,000 .05 1 (annual) 8 $5909.82
$4,000 .05 4 (quarterly) 8 $5952.52
$4,000 .05 12 (monthly) 8 $5962.34
$4,000 .05 365 (daily) 8 $5967.14
$4,000 .05 8760 (hourly) 8 $5967.29

In contrast to the changing interest rate, in this example, increasing the number of compoundings per year does not
seem to dramatically increase the value of the investment. We can see why this is the case of we look at the function
A(8) = 4000

(
1+ .05

n

)8n
. We can use x to represent the number of compounding periods per year and rewrite it as

a function of x. A graph of the function f (x) = 4000
(
1+ .05

x

)8x
is shown below:
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The graph seems to indicate that the function has a horizontal asymptote at $6000. However, if we zoom in, we can
see that the horizontal asymptote is closer to 5967.

What does this mean? This means that for the investment of $4000, at 5% interest, for 8 years, compounding more
and more frequently will never result in more than about $5968.00.

Another way to say this is that the function f (x) = 4000
(
1+ .05

x

)8x
has a limit as x approaches infinity. Next we will

look at this kind of limit to define a special form of compounding.

Continuous compounding

Consider a hypothetical example: you invest $1.00, at 100% interest, for 1 year. For this situation, the amount of
money you have at the end of the year depends on how often the interest is compounded:

F(t) = P
(
1+ r

n

)nt

F(t) = 1
(
1+ 1

n

)ln

A =
(
1+ 1

n

)n

Now lets consider different compoundings:

TABLE 4.42:

Types of Compounding n A
Annual 1 2
Quarterly 4 2.44140625
Monthly 12 2.61303529022
Daily 365 2.71456748202
Hourly 8,760 2.71812669063
By the minute 525,600 2.7182792154
By the second 31,536,000 2.71828247254

The values of A in the table have a limit, which might look familiar: it’s the number e. In fact, one of the
definitions of e is the value that

(
1+ 1

n

)n approaches as n increases without bound . Related to this is ex is the
value that

(
1+ x

n

)n approaches as n increases without bound.
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Now we can define what is known as continuous compounding. If interest is compounded n times per year, the
equation we use is: A(t) = P

(
1+ r

n

)nt . We can also write the function as A(t) = P
(
(1+ r

n)
n
)t . If we compound

more and more often, we are looking at what happens to this function as n increases without bound. We now
know ex is the value that

(
1+ x

n

)n approaches as n increases without bound. So as n increases without bound ,
P
(
(1+ r

n)
n
)t approaches P(er)t = Pert .

The function A(t) = Pert is the formula we use to calculate the amount of money when interest is continuously
compounded, rather than interest that is compounded at discrete intervals, such as monthly or quarterly. For example,
consider again the investment in Example 1 given earlier: what is the value of an investment after 20 years, if you
invest $2000, and the interest rate is 5% compounded continuously?

A(20) = $5436.56
A(20) = 2000e1

A(20) = 2000e.05(20)

A(t) = Pert

Just as we did with the standard compound interest formula, we can also determine the time it takes for an account
to reach a particular value if the interest is compounded continuously.

Example 5: How long will it take $2000 to grow to $25,000 in the previous example?

Solution: It will take about 50 and a half years:

TABLE 4.43:

A(t) = Pert

25,000 = 2000e.05(t)

12.5 = e.05(t) Divide both sides by 2000
ln 12.5 = ln e.05(t ) Take the ln of both sides
ln 12.5 = .05t ln e Use the power property of logs
ln 12.5 = .05t 1 lne = 1
ln 12.5 = 0.5t Isolate t
t = ln12.5

.05 ≈ 50.5

Lesson Summary

In this lesson we have developed formulas to calculate the amount of money in a bank account or an investment
when interest is compounded, either a discrete number of times per year, or compounded continuously. We have
found the value of accounts or investments, and we have found the time it takes to reach a particular value. We have
solved these problems algebraically and graphically, using our knowledge of functions in general, and logarithms in
particular.

In general, the examples we have seen are conservative in the larger scheme of investing. Given all of the information
available today about investments, you may look at the examples and think that the return on these investments seems
low. For example, in the last example, 50 years probably seems like a long time to wait!

It is important to keep in mind that these calculations are based on an initial investment only. In reality, if you
invest money long term, you will invest on a regular basis. For example, if an employer offers a retirement plan,
you may invest a set amount of money from every paycheck, and your employer may contribute a set amount as
well. As noted above, the calculations for the growth of a retirement investment are more complicated. However,
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the exponential functions you have studied in this lesson are the basis for the calculations you would need to do. The
examples here are meant to illustrate an application of exponential functions, and the power of compound interest.

To Think About

1. Why is compound interest modeled with an exponential function?
2. What is the difference between compounding and continuous compounding?
3. How are logarithms useful in solving compound interest problems?

Review Questions

1. You put $3500 in a bank account that earns 5.5% interest, compounded monthly. How much is in your account
after 2 years? After 5 years?

2. You put $2000 in a bank account that earns 7% interest, compounded quarterly. How much is in your account
after 10 years?

3. Solve an exponential equation in order to answer the question: given the investment in question 2, how many
years will it take for the account to reach $10,000?

4. Use a graph to verify your answer to question 3.
5. Consider two investments:

(1) $2000, invested at 6% interest, compounded monthly
(2) $3000, invested at 4.5% interest, compounded monthly
Use a graph to determine when the 2 investments have equal value.

6. You invest $3000 in an account that pays 6% interest, compounded monthly. How long does it take to double
your investment?

7. Explain why the answer to #6 does not depend on the amount of the initial investment.
8. You invest $4,000 in an account that pays 3.2% interest, compounded continuously. What is the value of the

account after 5 years?
9. You invest $6,000 in an account that pays 5% interest, compounded continuously. What is the value of the

account after 10 years?
10. Consider the investment in question 8. How many years will it take the investment to reach $20,000?

Review Answers

1. After 2 years: $3905.99. After 5 years: $4604.96.
2. $4003.19
3. Start with 2000

(
1+ .07

4

)4t
= 10000 and solve for t. t = ln5

4ln1.0175 ≈ 23.19 years.

4.
The functions cross at x ≈ 23.19
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5.
It takes about 27 years for the two investments to have the same value.

6. t = ln2
12ln1.005 ≈ 11.58 years.

7. When solving for t, the 6000 is divided by 3000, resulting in a 2 on the left side of the equation. (Hence the ln
2.) This would be the same, no matter what the initial investment was since the final amount is always twie as
large as the initial investment.

8. $4694.03
9. $9892.36

10. It will take about 50 years.

Vocabulary

Accrue
To accrue is to increase in amount or value over time. If interest accrues on a bank account, you will have
more money in your account. If interest accrues on a loan, you will owe more money to your lender.

Compound interest
Compound interest is interest based on a principal and on previous interest earned.

Continuous compounding
Interest that is based on continuous compounding is calculated according to the equation A(t)=Pert , where P
is the principal, r is the interest rate, t is the length of the investment, and A is the value of the account or
investment after t years.

Principal
The principal is the initial amount of an investment or a loan.

Simple interest
Simple interest is interest that is calculated as a percent of the principal, as a function of time.
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4.5 Growth and Decay

Learning objectives

• Model situations using exponential and logistic functions.
• Solve problems involving these models, using your knowledge of properties of logarithms, and using a

graphing calculator.

Introduction

In lesson 5 of this chapter, you learned about modeling phenomena with exponential and logarithmic functions. In
the examples in lesson 5, you used a graphing calculator to find a regression equation that fits a given set of data.
Here we will use algebraic techniques to develop models, and you will learn about another kind of function, the
logistic function, that can be used to model growth.

Exponential growth

In general, if you have enough information about a situation, you can write an exponential function to model growth
in the situation. Let’s start with a straightforward example:

Example 1: A social networking website is started by a group of 10 friends. They advertise their site before they
launch, and membership grows fast: the membership doubles every day. At this rate, what will the membership be
in a week? When will the membership reach 100,000?

Solution: To model this situation, let’s look at how the membership changes each day:

TABLE 4.44:

Time (in days) Membership
0 10
1 2 × 10 = 20
2 2 × 2 × 10 = 40
3 2 × 2 × 2 × 10 = 80
4 2 × 2 × 2 × 2 × 10 = 160

Notice that the membership on day x is 10(2x). Therefore we can model membership with the function M(x) =
10(2x). In seven days, the membership will be M(7) = 10(27) = 1280.

We can solve an exponential equation to find out when the membership will reach 100,000:

10(2x) = 100,000
2x = 10,000
log2x = log10,000
xlog2 = 4
x = 4

log2 ≈ 13.3
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At this rate, the membership will reach 100,000 in less than two weeks. This result may seem unreasonable. That’s
very fast growth!

So let’s consider a slower rate of doubling. Let’s say that the membership doubles every 7 days.

TABLE 4.45:

Time (in days) Membership
0 10
7 2 × 10 = 20
14 2 × 2 × 10 = 40
21 2 × 2 × 2 × 10 = 80
28 2 × 2 × 2 × 2 × 10 = 160

We can no longer use the function M(x) = 10(2x). However, we can use this function to find another function to
model this new situation. We will call this new function N(x). Looking at one data point will help. Consider for
example the fact that N(21) = 10(23). This is the case because 21 days results in 3 periods of doubling. In order
for x = 21 to produce 23 in the equation, the exponent in the function must be x/7. So we have N(x) = 10

(
2

x
7
)
. Let’s

verify that this equation makes sense for the data in the table:

M(0) = 10
(

2
0
7

)
= 10(1) = 10

N(7) = 10
(

2
7
7

)
= 10(2) = 20

N(14) = 10
(

2
14
7

)
= 10(22) = 10(4) = 40

N(21) = 10
(

2
21
7

)
= 10(23) = 10(8) = 80

N(28) = 10
(

2
28
7

)
= 10(24) = 10(16) = 160

Notice that each x value represents one more event of doubling, and in order for the function to have the correct
power of 2, the exponent must be (x/7).

With the new function M(x) = 10
(
2

x
7
)
, the membership doubles to 20 in one week, and reaches 100,000 in about 3

months:

10
(
2

x
7
)
= 100,000

2
x
7 = 100,000

log2
x
7 = log100,000

x
7 log2 = 4
xlog2 = 28
x = 28

log2 ≈ 93

The previous two examples of exponential growth have specifically been about doubling. We can also model a more
general growth pattern with a more general growth model. While the graphing calculator produces a function of the
form y = a(bx), population growth is often modeled with a function in which e is the base. Let’s look at this kind of
example:

The population of a town was 20,000 in 1990. Because of its proximity to technology companies, the population
grew to 35,000 by the year 2000. If the growth continues at this rate, how long will it take for the population to reach
1 million?

The general form of the exponential growth model is much like the continuous compounding function you learned in
the previous lesson. We can model exponential growth with a function of the form P(t) = P0ekt . The expression P(t)
represents the population after t years, the coefficient P0 represents the initial population, and k is a growth constant
that depends on the particular situation.
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In the situation above, we know that P0 = 20,000 and that P(10) = 35, 000. We can use this information to find the
value of k:

P(t) = P0ekt

P(10) = 35000 = 20000ek·10

35,000
20000 = e10k

1.75 = e10k

ln1.75 = lne10k

ln1.75 = 10klne
ln1.75 = 10k(1)
ln1.75 = 10k
k = ln1.75

10 ≈ 0.056

Therefore we can model the population growth with the function P(t) = 20000e
ln1.75

10 t . We can determine when the
population will reach 1,000,000 by solving an equation, or using a graph.

Here is a solution using an equation:
1000000 = 20000e

ln1.75
10 t

50 = e
ln1.75

10 t

ln50 = ln
(

e
ln1.75

10 t
)

ln50 = ln1.75
10 t(lne)

ln50 = ln1.75
10 t(1)

10ln50 = ln1.75t
t = 10ln50

ln1.75 ≈ 70

At this rate, it would take about 70 years for the population to reach 1 million. Like the initial doubling example,
the growth rate may seem very fast. In reality, a population that grows exponentially may not sustain its growth rate
over time. Next we will look at a different kind of function that can be used to model growth of this kind.

Logistic models

Given that resources are limited, a population may slow down in its growth over time. Consider the last example,
the town whose population increased from 20,000 to 35,000 in 10 years (from 1990 to 2000) and kept growing
exponentially. If there are no more houses to be bought, or tracts of land to be developed, the population will not
continue to grow exponentially. The table below shows the population of this town slowing down, though still
growing:

TABLE 4.46:

t (Years since 1990) Population
0 20,000
10 35,000
15 38,000
20 40,000

As the population growth slows down, the population may approach what is called a carrying capacity, or an upper
bound of the population. We can model this kind of growth using a logistic function, which is a function of the
form f (x) = c

1+a(e−bx)
.
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The graph below shows an example of a logistic function. This kind of graph is often called an “s curve” because of
its shape.

Notice that the graph shows slow growth, then fast growth, and then slow growth again, as the population or quantity
in question approaches the carrying capacity. Logistics functions are used to model population growth, as well as
other situations, such as the amount of medicine in a person’s system

Given the population data above, we can use a graphing calculator to find a logistic function to model this situation.
The details of this process are explained in the Technology Note in Lesson 5. As shown there, enter the data into
L1 and L2. Then run a logistic regression. Press the STAT button, scroll right to CALC, and scroll down to B:
Logistic.) An approximation of the logistic model for this data is: f (x) = 41042.38

1+1.050e−.178x . A graph of this function and
the data is shown here.

Notice that the graph has a horizontal asymptote around 40,000. Looking at the equation, you should notice that the
numerator is about 41,042. This value is in fact the horizontal asymptote, which represents the carrying capacity.
We can understand why this is the carrying capacity if we consider the limit of the function as x increases without
bound. As x gets larger and larger, e−.178x will get smaller and smaller. So 1.05 e−.178x will get smaller. This means
that the denominator of the function will get closer and closer to 1. Therefore:

(1+1.050e−.178x approaches 1 as x increases without bound.

Therefore the limit of the function is (approximately) (41042/1) = 41042. This means that given the current growth,
the model predicts that the population will not go beyond 41,042. This kind of growth is seen in actual populations,
as well as other situations in which some quantity grows very fast and then slows down, or when a quantity steeply
decreases, and then levels off. You will see work with more examples of logistic functions in the review questions.

Exponential decay

Just as a quantity can grow, or increase exponentially, we can model a decreasing quantity with an exponential
function. This kind of situation is referred to as exponential decay. Perhaps the most common example of exponential
decay is that of radioactive decay, which refers to the transformation of an atom of one type into an atom of a different
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type, when the nucleus of the atom loses energy. The rate of radioactive decay is usually measured in terms of “half-
life,” or the time it takes for half of the atoms in a sample to decay. For example Carbon-14 is a radioactive isotope
that is used in “carbon dating,” a method of determining the age of organic materials which include wood, leather,
and bone. The half-life of Carbon-14 is 5730 years. This means that if we have a sample of Carbon-14, it will take
5730 years for half of the sample to decay. Then it will take another 5730 years for half of the remaining sample to
decay, and so on.

We can model decay using the same form of equation we use to model growth, except that the exponent in the
equation is negative: A(t) = A0 e−kt . For example, say we have a sample of Carbon-14. How much time will pass
before 75% of the original sample remains?

In order to find when the 75% of the original sample remains, we need to find the rate at which the sample decays.
So we need to determine the decay constant k first. We can use the half-life of 5730 years to determine the value
of k:

TABLE 4.47:

A(t) = A0e−kt

1
2 = 1e−k·5730 We do not know the value of A0, so we use “1” to mean

100% of A0. Then 50% of A0 of the sample remains
when t = 5730 years

ln 1
2 = lne−k·5730 Take the ln of both sides

ln 1
2 =−5730k(lne) Use the power property of logs

ln 1
2 =−5730k ln(e) = 1
−ln2 =−5730k ln(1/2) = ln(2−1) =−ln2
ln2 = 5730k
k = ln2

5730 Isolate k

Now we can determine when the amount of Carbon-14 remaining is 75% of the original:

0.75 = 1e
−ln2
5730 t

0.75 = 1e
−ln2
5730 t

ln(0.75) = lne
−ln2
5730 t

ln(0.75) = −ln2
5730 t

t = 5730ln(0.75)
−ln2 ≈ 2378

Therefore it would take about 2,378 years for 75% of the original sample to be remaining. In practice, scientists
can approximate the age of an artifact using a process that relies on their knowledge of the half-life of Carbon-14,
as well as the ratio of Carbon-14 to Carbon-12 (the most abundant, stable form of carbon) in an object. While the
concept of half-life often is used in the context of radioactive decay, it is also used in other situations. In the review
questions, you will see another common example, that of medicine in a person’s system.

Related to exponential decay is Newton’s Law of Cooling. The Law of Cooling allows us to determine the temper-
ature of a cooling (or warming) object, based on the temperature of the surroundings and the time since the object
entered the surroundings. The general form of the cooling function is T(x) = Ts + (T0 - Ts) e−kx, where Ts, is the
surrounding temperature, T0 is the initial temperature, and x represents the time since the object began cooling or
warming.

227

http://www.ck12.org


4.5. Growth and Decay www.ck12.org

The first graph shows a situation in which an object is cooling. The graph has a horizontal asymptote at y = 70. This
tells us that the object is cooling to 70◦F. The second graph has a horizontal asymptote at y = 70 as well, but in this
situation, the object is warming up to 70◦F.

We can use the general form of the function to answer questions about cooling (or warming) situations. Consider
the following example: you are baking a casserole in a dish, and the oven is set to 325◦F. You take the pan out of the
oven and put it on a cooling rack in your kitchen which is 70◦F, and after 10 minutes the pan has cooled to 300◦F.
How long will it take for the pan to cool to 200◦F?

To answer this question, we first need to determine the rate at which the pan is cooling. We can use the general form
of the equation and the information given in the problem to find the value of k:

T (x) = Ts +(T0−Ts)e−kx

T (x) = 70+(325−70)e−kx

T (x) = 70+(255)e−kx

T (10) = 70+255e−10k = 300
255e−10k = 230
e−10k = 230

255
lne−10k = ln

(230
255

)
−10k = ln

(230
255

)
k =

ln( 230
255)
−10 ≈ 0.0103

Now we can determine the amount of time it takes for the pan to cool to 200 degrees:

T (x) = 70+(255)e−.0103x

T (x) = 70+(255)e−.0103x

200 = 70+(255)e−.0103x

130 = (255)e−.0103x

130
255 = e−.0103x

ln
(130

255

)
= lne−.0103x

ln
(130

255

)
=−.0103x

x =
ln( 130

255)
−.0103 ≈ 65

It takes approximately 65 minutes to cool to the desired temperature. Therefore, in the given surroundings, it would
take about an hour for the pan to cool to 200 degrees.

Lesson Summary

In this lesson we have developed exponential and logistic models to represent different phenomena. We have
considered exponential growth, logistic growth, and exponential decay. After reading the examples in this lesson,
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you should be able to write a function to represent a given situation, to evaluate the function for a given value of
x, and to solve exponential equations in order to find values of x, given values of the function. For example, in a
situation of exponential population growth as a function of time, you should be able to determine the population at
a particular time, and to determine the time it takes for the population to reach a given amount. You should be able
to solve these kinds of problems by solving exponential equations, and by using graphing utilities, as we have done
throughout the chapter.

To Think About

1. How can we use the same equation for exponential growth and decay?
2. What are the restrictions on domain and range for the examples in this lesson?
3. How can we use different equations to model the same situations?

Review Questions

1. The population of a town was 50,000 in 1980, and it grew to 70,000 by 1995. a. Write an exponential function
to model the growth of the population. b. Use the function to estimate the population in 2010. c. What if the
population growth was linear? Write a linear equation to model the population growth, and use it to estimate
the population in 2010.

2. A telecommunications company began providing wireless service in 1994, and during that year the company
had 1000 subscribers. By 2004, the company had 12,000 subscribers. a. Write an exponential function to
model the situation b. Use the model to determine how long it will take for the company to reach 50,000
subscribers.

3. The population of a particular strain of bacteria triples every 8 hours. a. Write a general exponential function
to model the bacteria growth. b. Use the model to determine how long it will take for a sample of bacteria to
be 100 times its original population. c. Use a graph to verify your solution to part b.

4. The half-life of acetaminophen is about 2 hours. a. If you take 650 mg of acetaminophen, how much will be
left in your system after 7 hours? b. How long before there is less than 25 mg in your system?

5. The population of a city was 200,000 in 1991, and it decreased to 170,000 by 2001. a. Write an exponential
function to model the decreasing population, and use the model to predict the population in 2008. b. Under
what circumstances might the function cease to model the situation after a certain point in time?

6. Consider the following situation: you buy a large box of pens for the start of the school year, and after six
weeks, (1/3) of the pens remain. After another six weeks, (1/3) of the remaining pens were remaining. If you
continue this pattern, when will you only have 5% of the pens left?

7. Use Newton’s law of cooling to answer the question: you pour hot water into a mug to make tea. The
temperature of the water is about 200 degrees. The surrounding temperature is about 75 degrees. You let the
water cool for 5 minutes, and the temperature decreases to 160 degrees. What will the temperature be after 15
minutes?

8. The spread of a particular virus can be modeled with the logistic function f (x) = 2000
1+600e−.75x , where x is the

number of days the virus has been spreading, and f(x) represents the number of people who have the virus. a.
How many people will be affected after 7 days? b. How many days will it take for the spread to be within one
person of carrying capacity?

9. Consider again the situation in question #2: A telecommunications company began providing wireless service
in 1994, and during that year the company had 1000 subscribers. By 2004, the company had 12,000 sub-
scribers. If the company has 15,000 subscribers in 2005, and 16,000 in 2007, what type of model do you think
should be used to model the situation? Use a graphing calculator to find a regression equation, and use the
equation to predict the number of subscribers in 2010.

10. Compare exponential and logistic functions as tools for modeling growth. What do they have in common, and
how do they differ?
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Review Answers

1. a. A(T ) = 50,000e
ln( 7

5 )

15 t (Alternatively,A(t) = 50,000
(7

5

)t/15

b. The estimated population is 98,000, which is a difference of 8000 people or different by about 8% of the
population predicted by the exponential model.
c. f (t) = 4000

3 t +50000. The population would be 90,000, which is different by about 9%.

2. a. S(t) = 1000e
ln(12)

10 t (Alternatively, S(t) = 1000(12)t/10)
b. t = 10ln50

ln12 ≈ 15.74 Approximately, 15.74 years to reach 50,000 subscribers.
3. a. A(t) = A0 (3t/8)

b. t = 16
log3 ≈ 33.53 It takes approximately 33.53 hours (about 1 day, 9 hours, 32 minutes) to reach 100 times

it original population.
c. The graph below shows y = 100 and y = 3x/8, which intersect at approximately x = 33.53

4. a. About 57.45 mg b. About 9.4 hours
5. a. P(t) = 200000e

−ln.85
−10 t ,P(17)≈ 151720 (Alternatively P(t) = 200000(0.85)t/10) The estimated population

in 2008 is 151,720.
b. If the economy or other factors change, the population might begin to increase, or the rate of decrease could
change as well.

6. t = 6log(0.05)
log( 1

3 )
≈ 16 weeks It takes appo

7. About 114 degrees. (Hint: Determine k first in the model T (x) = 75+125e−kx, knowing the temperature is
160 degrees at 5 minutes.)

8. a. About 482 people. b. After 19 days, over 1999 people have the virus.
9. The graph indicates a logistic model. f (x)≈ 18872

1+21.45e−.377x gives 17952 subscribers in 2010.
10. Both types of functions model fast increase in growth, but the logistic model shows the growth slowing down

after some point, with some upper bound on the quantity in question. (Many people argue that logistic growth
is more realistic.)

Vocabulary

Carrying capacity
The supportable population of an organism, given the food, habitat, water and other necessities available
within an ecosystem is known as the ecosystem’s carrying capacity for that organism.
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Radioactive decay
Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting radiation in
the form of particles or electromagnetic waves. This decay, or loss of energy, results in an atom of one type
transforming to an atom of a different type. For example, Carbon-14 transforms into Nitrogen-14.

Half-life
The amount of time it takes for half of a given amount of a substance to decay. The half-life remains the same,
no matter how much of the substance there is.

Isotope
Isotopes are any of two or more forms of a chemical element, having the same number of protons in the
nucleus, or the same atomic number, but having different numbers of neutrons in the nucleus, or different
atomic weights.
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4.6 Logarithmic Scales

Learning objectives

• Work with the decibel system for measuring loudness of sound.
• Work with the Richter scale, which measures the magnitude of earthquakes.
• Work with pH values and concentrations of hydrogen ions.

Introduction

Because logarithms are related to exponential relationships, logarithms are useful for measuring phenomena that
involve very large numbers or very small numbers. In this lesson you will learn about three situations in which a
quantity is measured using logarithms. In each situation, a logarithm is used to simplify measurements of either very
small numbers or very large numbers. We begin with measuring the intensity of sound.

Intensity of sound

Sound intensity is measured using a logarithmic scale. The intensity of a sound wave is measured in Watts per square
meter, or W/m2. Our hearing threshold (or the minimum intensity we can hear at a frequency of 1000 Hz), is 2.5
10−12 W/m2. The intensity of sound is often measured using the decibel (dB) system. We can think of this system
as a function. The input of the function is the intensity of the sound, and the output is some number of decibels. The
decibel is a dimensionless unit; however, because decibels are used in common and scientific discussions of sound,
the values of the scale have become familiar to people.

We can calculate the decibel measure as follows:

Intensity level (dB) = 10log
[ intensity of sound in W/m2

.937×10−12W/m2

]
An intensity of .937×10−12W/m2 corresponds to 0 decibels:

10log
[
.937×10−12W/m2

.937×10−12W/m2

]
= 10log1 = 10(0) = 0.

Note: The sound equivalent to 4 decibels is approximately the lowest sound that humans can hear.

If the intensity is ten times as large as the intensity corresponding to 0 decibels, the decibel level is 10:

10log
[
.937×10−11W/m2

.937×10−12W/m2

]
= 10log10 = 10(1) = 10

If the intensity is 100 times as large as the intensity corresponding to 0 decibels, the decibel level is 20, and if
the intensity is 1000 times as large, the decibel level is 30. (The scale is created this way in order to correspond
to human hearing. We tend to underestimate intensity.) The threshold for pain caused by sound is 1 W/m2. This
intensity corresponds to about 120 decibels:

10log
[

1W/m2

.937×10−12W/m2

]
≈ 10(12) = 120
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Many common phenomena are louder than this. For example, a jet can reach about 140 decibels, and concert can
reach about 150 decibels. (Source: Ohanian, H.C. (1989) Physics. New York: W.W. Norton & Company.)

For ease of calculation, the equation is often simplified and 0.937 is rounded to 1 in the denominator of the argument
of the logarithm.

TABLE 4.48:

Intensity level (dB) = 10log
[ intensity of sound in W/m2

1×10−12W/m2

]
= 10log

[ intensity of sound in W/m2

10−12W/m2

]
In the example below we will use this simplified equation to answer a question about decibels. (In the review
exercises, you can also use this simplified equation).

Example 1: Verify that a sound of intensity 100 times that of a sound of 0 dB corresponds to 20 dB.

Solution: dB = 10log
(

100×10−12

10−12

)
= 10log(100) = 10(2) = 20.

Intensity and magnitude of earthquakes

An earthquake occurs when energy is released from within the earth, often caused by movement along fault lines. An
earthquake can be measured in terms of its intensity, or its magnitude. Intensity refers to the effect of the earthquake,
which depends on location with respect to the epicenter of the quake. Intensity and magnitude are not the same
thing.

As mentioned in lesson 3, the magnitude of an earthquake is measured using logarithms. In 1935, scientist Charles
Richter developed this scale in order to compare the size of earthquakes. You can think of Richter scale as a function
in which the input is the amplitude of a seismic wave, as measured by a seismograph, and the output is a magnitude.
However, there is more than one way to calculate the magnitude of an earthquake because earthquakes produce two
different kinds of waves that can be measured for amplitude. The calculations are further complicated by the need
for a correction factor, which is a function of the distance between the epicenter and the location of the seismograph.

Given these complexities, seismologists may use different formulas, depending on the conditions of a specific
earthquake. This is done so that the measurement of the magnitude of a specific earthquake is consistent with
Richters original definition. (Source: http://earthquake.usgs.gov/learning/topics/richter.php)

Even without a specific formula, we can use the Richter scale to compare the size of earthquakes. Each point of
increase in an earthquake’s magnitude represents a tenfold increase in the earthquakes measured amplitude. For
example, the 1906 San Francisco earthquake had a magnitude of about 7.7. The 1989 Loma Prieta earthquake had a
magnitude of about 6.9. (The epicenter of the quake was near Loma Prieta peak in the Santa Cruz mountains, south
of San Francisco.) Because the Richter scale is logarithmic, this means that the 1906 quake was six times as strong
as the 1989 quake. To determine this, we made a comparison between their relative amplitudes:

107.7

106.9 = 107.7−6.9 = 10.8 ≈ 6.3

This kind of calculation explains why magnitudes are reported using a whole number and a decimal. In fact, a
decimal difference makes a big difference in the size of the earthquake, as shown below and in the review exercises.
Note that the strength of this earthquake was not time 10 times as large as the 1906 San Francisco earthquake because
the increase from 6.9 to 7.7 was 0.8. If the 1906 earthquake had been a 7.9 on the Richter scale, then it would have
been 10 times as strong as a 6.9 since this would have represented an increase of 1 in amplitude.

Example 2: An earthquake has a magnitude of 3.5. A second earthquake is 100 times as strong. What is the
magnitude of the second earthquake?
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Solution: The second earthquake is 100 times as strong as the earthquake of magnitude 3.5. This means that if the
magnitude of the second earthquake is x, then:

10x

103.5 = 100
10x−3.5 = 100 = 102

x−3.5 = 2
x = 5.5

So the magnitude of the second earthquake is 5.5. Since each point increase in magnitude on the Richter scale
corresponds to a tenfold increase in strength of the earthquake, this solution also make sense.

The pH scale

If you have studied chemistry, you may have learned about acids and bases. An acid is a substance that produces
hydrogen ions when added to water. A hydrogen ion is a positively charged atom of hydrogen, written as H+. A
base is a substance that produces hydroxide ions (OH −) when added to water. Acids and bases play important roles
in everyday life, including within the human body. For example, our stomachs produce acids in order to breakdown
foods. However, for people who suffer from gastric reflux, acids travel up to and can damage the esophagus.
Substances that are bases are often used in cleaners, but a strong base is dangerous: it can burn your skin.

To measure the concentration of an acid or a base in a substance, we use the pH scale, which was invented in the
early 1900s by a Danish scientist named Soren Sorenson. The pH of a substance depends on the concentration of
H+, which is written with the symbol [H+].

(Note: concentration is usually measured in moles per liter. A mole is 6.02×1023 units. Here, it would be
6.02×1023 hydrogen ions.)

pH = - log [H+]

For example, the concentration of H+ in stomach acid is about 1×10 −1 moles per liter. So the pH of stomach acid
is -log (10−1) = -(-1) = 1. The pH scale ranges from 0 to 14. A substance with a low pH is an acid. A substance with
a high pH is a base. A substance with a pH in the middle of the scale (at a 7) is considered to be neutral.
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Example 3: The pH of ammonia is 11. What is the concentration of H+?

Solution: pH = - log [H+]. If we substitute 11 for pH we can solve for H+:

11 =−log[H+]
−11 = log[H+]
10−11 = 10log[H+]

10−11 = H+

So the concentration of H+ is 10−11 moles per liter.

Lesson Summary

In this lesson we have looked at three examples of logarithmic scales. In the case of the decibel system, using a
logarithm has produced a simple way of categorizing the intensity of sound. The Richter scale allows us to compare
earthquakes. And, the pH scale allows us to categorize acids and bases. In each case, a logarithm helps us work with
large or small numbers, in order to more easily understand the quantities involved in certain real world phenomena.

To Think About

1. How are the decibel system and the Richter scale the same, and how are they different?
2. What other phenomena might be modeled using a logarithmic scale?
3. Two earthquakes of the same magnitude do not necessarily cause the same amount of destruction. How is that

possible?

Review Questions

1. Verify that a sound of intensity 1000 times that of a sound of 0 dB corresponds to 30 dB.
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2. Calculate the decibel level of a sound with intensity 10−8W/m2.
3. Calculate the intensity of a sound if the decibel level is 25.
4. The 2004 Indian Ocean earthquake was recorded to have a magnitude of about 9.5. In 1960, an earthquake in

Chile was recorded to have a magnitude of 9.1. How much stronger was the 2004 Indian Ocean quake?
5. The concentration of H+ in pure water is 1×10 −7 moles per liter. What is the pH?
6. The pH of normal human blood is 7.4. What is the concentration of H+?

Review Answers

1. dB = 10log
(

100×10−12

10−12

)
= 10log(100) = 10(3) = 30

2. dB = 10log
(

10−8
10−12

)
= 10log(10000) = 10(4) = 40 This sound level is 40 decibels.

3. 10−9.5 Appproximately 3.16×10−10 W/m2 , or alternatively, 109.5 W/m2

4. 100.4≈ 2.5 The Indian Ocean earthquake was 2.5 times stronger than the Chilean earthquake.
5. The pH is 7.
6. 10−7.4≈ 3.98 10−8 The concentration of H+ is approximately 3.98×10−8 moles per liter, or alternatively,

10−7.4 moles per liter.

Vocabulary

Acid
An acid is a substance that produces hydrogen ions (H+) when added to water.

Amplitude
The amplitude of a wave is the distance from its highest (or lowest) point to its center.

Base
A base is a substance that produces hydroxide ions (OH −) when added to water

Decibel
A decibel is a unitless measure of the intensity of sound.

Mole
6.02×1023 units of a substance.

Seismograph
A seismograph is a device used to measure the amplitude of earthquakes.
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CHAPTER 5 Radical Functions
Chapter Outline

5.1 GRAPHS OF SQUARE ROOT FUNCTIONS

5.2 RADICAL EXPRESSIONS I

5.3 RADICAL EXPRESSIONS II

5.4 RADICAL EQUATIONS

5.5 IMAGINARY AND COMPLEX NUMBERS
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5.1 Graphs of Square Root Functions

Learning Objectives

• Graph and compare square root functions.
• Shift graphs of square root functions.
• Graph square root functions using a graphing calculator.
• Solve real-world problems using square root functions.

Introduction

In this chapter, you will be learning about a different kind of function called the square root function. You have
seen that taking the square root is very useful in solving quadratic equations. For example, to solve the equation
x2 = 25 we take the square root of both sides

√
x2 =±

√
25 and obtain x =±5. A square root function has the form

y =
√

f (x). In this type of function, the expression in terms of x is found inside the square root symbol (also called
the “radical” symbol).

Graph and Compare Square Root Functions

The square root function is the first time where you will have to consider the domain of the function before graphing.
The domain is very important because the function is undefined if the expression inside the square root symbol is
negative, and as a result there will be no graph in that region. In other words, since

√
−3 is not a real number, it

can not be graphed on the coordinate plane.

In order to cover how the graphs of the square root function behave, we should make a table of values and plot the
points.

Example 1

Graph the function f (x) =
√

x.

Solution

Before we make a table of values, we need to find the domain of this square root function. The domain is found by
realizing that the function is only defined when the expression inside the radical is greater than or equal to zero. We
find that the domain is all values of x such that x≥ 0.

This means that when we make our table of values, we must pick values of x that are greater than or equal to zero.
It is very useful to include the value of zero as the first value in the table and include many values greater than zero.
This will help us in determining what the shape of the curve will be. It is often helpful to replace f(x) with y to
complete the table of values.

TABLE 5.1:

x y (x,y)

0
√

0 = 0 (0,0)
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TABLE 5.1: (continued)

1
√

1 = 1 (1,1)

2
√

2≈ 1.4 (2,1.4)

3
√

3≈ 1.7 (3,1.7)

4
√

4 = 2 (4,2)

5
√

5≈ 2.2 (5,2.2)

6
√

6≈ 2.4 (6,2.4)

7
√

7≈ 2.6 (7,2.6)

8
√

8≈ 2.8 (8,2.8)

9
√

9 = 3 (9,3)

After plotting the points (x,y) generated in the table, the graph of f (x) =
√

x is pictured below.

The graphs of square root functions are always curved. The curve aboveis similar to a half of a parabola lying on its
side. In fact, the square root function we graphed above comes from the equation y2 = x.

This is in the form of a parabola but with the x and y interchanged. We see that when we solve this expression for y
we obtain two solutions y =

√
x and y =−

√
x. The graph above shows the positive square root of this solution.

Example 2

Graph the function f (x) =−
√

x.
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Solution

Once again, we must look at the domain of the function first. We see that the function is defined only for x≥ 0. Let’s
make a table of values and calculate a few values of the function.

TABLE 5.2:

x y (x,y)

0 −
√

0 = 0 (0,0)

1 −
√

1 =−1 (1,−1)

2 −
√

2≈−1.4 (2,−1.4)

3 −
√

3≈−1.7 (3,−1.7)

4 −
√

4 =−2 (4,−2)

5 −
√

5≈−2.2 (5,−2.2)

6 −
√

6≈−2.4 (6,−2.4)

7 −
√

7≈−2.6 (7,−2.6)

8 −
√

8≈−2.8 (8,−2.8)

9 −
√

9 =−3 (9,−3)

The graph of f (x) =−
√

x is pictured below.
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Notice that if we graph the two separate functions on the same coordinate axes, the combined graph is a parabola
lying on its side.

Now let’s compare square root functions that are multiples of each other.

Example 3

Graph the following functions on the same coordinate plane.

f (x) =
√

x

f (x) = 2
√

x

f (x) = 3
√

x

f (x) = 4
√

x

Solution

Here we will show just the graph without the table of values.
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If we multiply the function by a constant greater than one, the function values (y-coordinates) increase faster. We
can say the graph of the basic function is vertically stretched by 2, 3, 4, and so on.

We can say the 2, 3, and 4 outside of the square root vertically stretch the graph of f (x) =
√

x by 2, 3, and 4.

Example 4

Graph the following functions on the same coordinate plane.

a. f (x) =
√

x,

b. f (x) =
√

2x

c. f (x) =
√

3x

d. f (x) =
√

4x

Solution

FIGURE 5.1

Notice that multiplying the expression inside the square root by a constant greater than one has the same effect as
in the previous example but the function values increase at a slower rate because the entire function is effectively
multiplied by the square root of the constant. Also note that the graph of f (x) =

√
4x is the same as the graph of

f (x) = 2
√

x. This makes sense algebraically since
√

4x =
√

4 ·
√

x = 2
√

x.

Another way to think of the function f (x) =
√

2x is that input values (x-values) of half the value of the input (x-
values) of f (x) =

√
x will produce the same outputs. For example, let’s consider the input or x-value of 4 for the

function f (x) =
√

x. f (4) =
√

4 = 2. Now for the function f (x) =
√

2x, let’s consider the input or x-value of 2,
which is 1/2 of 4. f (2) =

√
2 ·2 = 2.

We can say that the factors of 2, 3, or 4 under the square root horizontally compress the graph of the function f (x) =√
x by 2, 3,

We can say the factors of 2, 3, and 4 under the square root horizontally compress the graph of f (x) =
√

x by 2, 3,
and 4.
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Example 5

Graph the following functions on the same coordinate plane.

f (x) =
√

x

f (x) =
1
2
√

x

f (x) =
1
3
√

x

f (x) =
1
4
√

x

Solution

If we multiply the function by a constant between 0 and 1, the function values increase at a slower rate for smaller
positive constants. The constant is often in fraction form.

We can say the 1
2 , 1

3 , and 1
4 vertically compress the function f (x) =

√
x.

Example 6

Graph the following functions on the same coordinate plane.

f (x) = 2
√

x

f (x) =−2
√

x

Solution

If we multiply the function by a negative integer, the square root function is reflected across the x−axis.
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Example 7

Graph the following functions on the same coordinate plane.

f (x) =
√

x

f (x) =
√
−x

Solution

Notice that for function f (x) =
√

x the domain is values of x≥ 0, and for function f (x) =
√
−x the domain is values

of x≤ 0.

When we relace x with −x in a function, the graph is reflected about the y−axis.

Shift Graphs of Square Root Functions

Now, let’s see what happens to the square root function as we add positive and negative constants to the function.

Example 8

Graph the functions on the same coordinate plane.

f (x) =
√

x

f (x) =
√

x+2

f (x) =
√

x−2
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.

Solution

We see that the graph keeps the same shape, but is shifted up for adding positive constants and shifted down for
adding negative constants or subtracting a positive constant.

Example 9

Graph the functions on the same coordinate plane.

f (x) =
√

x

f (x) =
√

x−2

f (x) =
√

x+2

.

Solution

When we replace x with (x± c), where c is a constant, the graph of the function shifts to the left for a positive
constant and to the right for a negative constant because the domain shifts. Remember, there can’t be a negative
number inside the square root symbol.

Notice f (x) =
√

x+2 shifts the graph of f (x) =
√

x 2 units left and f (x) =
√

x−2 shifts the graph of f (x) =
√

x 2
units right.

Graph Square Root Functions Using a Graphing Calculator

Next, we will demonstrate how to use the graphing calculator to plot square root functions.
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Example 10

Graph the following functions using a graphing calculator.

a) f (x) =
√

x+5

b) f (x) =
√

9− x2

Solution:

In all the cases we start by pressing the [Y =] button and entering the function on the [Y1 =] of the screen.

We then press [GRAPH] to display the results. Make sure your window is set appropriately in order to view the
graph. This is done by pressing the [WINDOW] button and choosing appropriate values for the Xmin, Xmax, Ymin
and Ymax for the best graph view.

a)

The window of this graph is −6≤ x≤ 6; −5≤ y≤ 5.

The domain of the function is x≥−5

b)

The window of this graph is −5≤ x≤ 5;−5≤ y≤ 5.

The domain of the function is −3≤ x≤ 3
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Solve Real-World Problems Using Square Root Functions

Pendulum

Mathematicians and physicists have studied the motion of a pendulum in great detail because this motion explains
many other behaviors that occur in nature. This type of motion is called simple harmonic motion and it is very
important because it describes anything that repeats periodically. Galileo was the first person to study the motion of
a pendulum around the year 1600. He found that the time it takes a pendulum to complete a swing from a starting
point back to the beginning does not depend on its mass or on its angle of swing (as long as the angle of the swing
is small). Rather, it depends only on the length of the pendulum.

The time it takes a pendulum to swing from a starting point and back to the beginning is called the period of the
pendulum.
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Galileo found that the period (T ) of a pendulum is proportional to the square root of its length (L). T = a
√

L. The
proportionality constant depends on the acceleration of gravity a = 2π√

g . At sea level on Earth the acceleration of

gravity is g = 9.81 m/s2 (meters per second squared). Using this value of gravity, we find a = 2.0 with units of s√
m

(seconds divided by the square root of meters). Up until the mid 20th century, all clocks used pendulums as their
central time keeping component.

Example 11

Graph the period of a pendulum of a clock swinging in a house on Earth at sea level as we change the length of the
pendulum. What does the length of the pendulum need to be for its period to be one second?

Solution

The function for the period of a pendulum at sea level is: T = 2
√

L.

We make a graph with the horizontal axis representing the length (L) of the pendulum and with the vertical axis
representing the period (T ) of the pendulum.

We start by making a table of values.

TABLE 5.3:

L T (L,T )

0 T = 2
√

0 = 0 (0,0)

1 T = 2
√

2≈ 2.8 (1,2.8)

2 T = 2
√

1 = 2 (2,2)

3 T = 2
√

3≈ 3.5 (3,3.5)

4 T = 2
√

4 = 4 (4,4)
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TABLE 5.3: (continued)

5 T = 2
√

5≈ 4.5 (5,4.5)

Now let’s graph the function.

We can see from the graph that a length of approximately 1
4 meters gives a period of one second. We can confirm

this answer by using our function for the period and plugging in T = 1 second.

T = 2
√

L⇒ 1 = 2
√

L

Square both sides of the equation: 1 = 4L

Solve for L : L =
1
4

meters

Example 12

“Square” TV screens have an aspect ratio of 4:3. This means that for every four inches of length on the horizontal,
there are three inches of length on the vertical. TV sizes represent the length of the diagonal of the television screen.
Graph the length of the diagonal of a screen as a function of the area of the screen. What is the diagonal of a screen
with an area of 180 in2?

Solution

Let d = length of the diagonal, x = horizontal length
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4 ·vertical length = 3 ·horizontal length

Or,

vertical length =
3
4

x.

The area of the screen is: A = length ·width or A = 3
4 x2

Find how the diagonal length and the horizontal length are related by using the Pythagorean theorem, a2 +b2 = c2.

x2 +

(
3
4

x
)2

= d2

x2 +
9
16

x2 = d2

25
16

x2 = d2⇒ x2 =
16
25

d2⇒ x =
4
5

d

A =
3
4

(
4
5

d
)2

=
3
4
· 16

25
d2 =

12
25

d2

We can also find the diagonal length as a function of the area d2 = 25
12 A or d = 5

2
√

3

√
A.

Make a graph where the horizontal axis represents the area (A) of the television screen and the vertical axis is the
length of the diagonal (d). Let’s make a table of values.
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TABLE 5.4:

A d (x,y)

0 0 (0,0)

25 ≈ 7.2 (25,7.2)

50 ≈ 10.2 (50,10.2)

75 ≈ 12.5 (75,12.5)

100 ≈ 14.4 (100,14.4)

125 ≈ 16.1 (125,16.1)

150 ≈ 17.6 (150,17.6)

175 ≈ 19.0 (175,19.0)

200 ≈ 20.4 (200,20.4)

From the graph we can estimate that when the area of a TV screen is 180 in2the length of the diagonal is approxi-
mately 19.5 inches inches. We can confirm this by substituting a = 180 into the formula that relates the diagonal to
the area.

d =
5

2
√

3

√
A =

5
2
√

3

√
180 = 19.4 inches
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Review Questions

Graph the following functions on the same coordinate axes.

1. f (x) =
√

x, f (x) = 2.5
√

x and f (x) =−2.5
√

x

2. f (x) =
√

x, f (x) = 0.3
√

x and f (x) = 0.6
√

x

3. f (x) =
√

x, f (x) =
√

x−5and f (x) =
√

x+5

4. f (x) =
√

x, f (x) =
√

x+8and f (x) =
√

x−8

Graph the following functions.

5. f (x) =
√

2x−1

6. f (x) =
√

4x+4

7. f (x) =
√

5− x

8. f (x) = 2
√

x+5

9. f (x) = 3−
√

x

10. f (x) = 4+2
√

x

11. f (x) = 2
√

2x+3+1

12. f (x) = 4+2
√

2− x

13. f (x) =
√

x+1−
√

4x−5

14. The acceleration of gravity can also given in feet per second squared. It is g = 32 f t/s2at sea level. Graph the
period of a pendulum with respect to its length in feet. For what length in feet will the period of a pendulum be two
seconds?

15. The acceleration of gravity on the Moon is 1.6 m/s2. Graph the period of a pendulum on the Moon with respect
to its length in meters. For what length, in meters, will the period of a pendulum be 10 seconds?

16. The acceleration of gravity on Mars is 3.69 m/s2. Graph the period of a pendulum on the Mars with respect to
its length in meters. For what length, in meters, will the period of a pendulum be three seconds?

17. The acceleration of gravity on the Earth depends on the latitude and altitude of a place. The value of gis slightly
smaller for places closer to the Equator than places closer to the Poles, and the value of gis slightly smaller for places
at higher altitudes that it is for places at lower altitudes. In Helsinki, the value of g = 9.819 m/s2, in Los Angeles
the value of g = 9.796 m/s2and in Mexico City the value of g = 9.779 m/s2. Graph the period of a pendulum
with respect to its length for all three cities on the same graph. Use the formula to find the length (in meters) of a
pendulum with a period of 8 seconds for each of these cities.

18. The aspect ratio of a wide-screen TV is 2.39:1. Graph the length of the diagonal of a screen as a function of the
area of the screen. What is the diagonal of a screen with area 150 in2?

Graph the following functions using a graphing calculator.

19. f (x) =
√

3x−2

20. f (x) = 4+
√

2− x

21. f (x) =
√

x2−9

22. f (x) =
√

x−
√

x+2

Review Answers

1.
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2.

3.

4.
5.
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6.

7.

8.
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9.

10.

11.

12.
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13.

14.
L = 3.25 f eet

15.
L = 4.05 meters
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16.
L = 0.84 meters

17.

Note: The differences are so small that all of the lines appear to coincide on this graph. If you zoom (way) in you
can see slight differences. The period of an 8 meter pedulum in Helsinki is 1.8099 seconds, in Los Angeles it is
1.8142 seconds, and in Mexico City it is 1.8173 seconds.

18.

D = 20.5 inches

15.92 m Helsinki

15.88 m Los Angeles

15.85 m Mexico City

19.
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Window −1≤ x≤ 5;−5≤ y≤ 5

20.

Window −5≤ x≤ 5;0≤ y≤ 10

21.

Window −6≤ x≤ 6;−1≤ y≤ 10

22.

Window 0≤ x≤ 5;−3≤ y≤ 1
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5.2 Radical Expressions I

Learning objectives

• Use the product and quotient properties of radicals to simplify radicals.
• Add and subtract radical expressions.
• Solve real-world problems using square root functions.

Introduction

A radical reverses the operation of raising a number to a power. For example, to find the square of 4 we write
42 = 4 · 4 = 16. The reverse process is called finding the square root. The symbol for a square root is √ . This
symbol is also called the radical. When we take the square root of a number, the result is a number which when
squared gives the number under the square root. For example,

√
9 = 3 since 32 = 3 ·3 = 9

The index of a radical indicates which root of the number we are seeking. Square roots have an index of 2 but most
times this index is not written.

√
36 =

2√
36 = 6 since 62 = 36

The cube root of a number gives a number which when raised to the third power gives the number under the radical.

3√
64 = 4 since 43 = 4 ·4 ·4 = 64

The fourth root of number gives a number which when raised to the power four gives the number under the radical
sign.

4√81 = 3 since 34 = 3 ·3 ·3 ·3 = 81

The index is 4 and the 81 is called the radicand.

Even and odd roots

Radical expressions that have even indices are called even roots and radical expressions that have odd indices are
called odd roots. There is a very important difference between even and odd roots in that they give drastically
different results when the number inside the radical sign is negative.

Any real number raised to an even power results in a positive number. Therefore, when the index of a radical is even,
the number inside the radical sign must be non-negative in order to get a real number answer.
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On the other hand, a positive number raised to an odd power is positive and a negative number raised to an odd
power is negative. Thus, a negative number inside the radical with an odd index is not a problem. It results in a
negative number.

Example 1

Evaluate each radical expression.

a)
√

121

b)
3√

125

c) 4√−625

d) 5√−32

Solution

a)
√

121 = 11

b)
3√

125 = 5

c) 4√−625 is not a real number

d) 5√−32 =−2

Use the Product and Quotient Properties of Radicals

Radicals can be rewritten as exponents with rational powers. The radical y = m√an is defined as a
n
m .

Example 2

Write each expression as an exponent with a rational value for the exponent.

a)
√

5

b) 4√a

c) 3
√

4xy

d)
6√

x5

Solution

a)
√

5 = 5
1
2

b) 4√a = a
1
4

c) 3
√

4xy = (4xy)
1
3

d)
6√

x5 = x
5
6

As a result of this property, for any non-negative number n√an = a
n
n = a1 = a.

Since roots of numbers can be treated as powers, we can use exponent rules to simplify and evaluate radical
expressions. Let’s review the product and quotient rule of exponents.

Raising a product to a power (x · y)n = xn · yn

Raising a quotient to a power
(

x
y

)n

=
xn

yn

In radical notation, these properties are written as
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Raising a product to a power m
√

x · y = m√x · m
√

y

Raising a quotient to a power m

√
x
y
=

m
√

x
m
√

y

A very important application of these rules is reducing a radical expression to its simplest form. This means that we
apply the root on all the factors of the number that are perfect roots and leave all factors that are not perfect roots
inside the radical sign.

For example, in the expression
√

16, the number is a perfect square because 16 = 42. This means that we can
simplify.

√
16 =

√
42 = 4

Thus, the square root disappears completely. This happens when the index and exponent are the same.

On the other hand, in the expression, the number
√

32 is not a perfect square so we cannot remove the square root.
However, we notice that 32 = 16 ·2, so we can write 32 as the product of a perfect square and another number.

√
32 =

√
16 ·2 =

√
16 ·2

If we apply the “raising a product to a power” rule we obtain

√
32 =

√
16 ·2 =

√
16 ·
√

2 = 4 ·
√

2 = 4
√

2

Example 3

Write the following expression in the simplest radical form.

a)
√

8

b)
√

50

c)

√
125
36

Solution

The strategy is to write the number under the square root as the product of a perfect square and another number. The
goal is to find the highest perfect square possible, however, if we don’t we can repeat the procedure until we cannot
simplify any longer.

a) We can write 8 = 4 ·2 so
√

8 =
√

4 ·2

Use the rule for raising a product to a power
√

4 ·2 =
√

4 ·
√

2 = 2
√

2

b) We can write 50 = 25 ·2 so
√

50 =
√

25 ·2

Use the rule for raising a product to a power =
√

25 ·
√

2 = 5
√

2

c) Use the rule for raising a quotient to a power to separate the fraction.

√
125
36

=

√
125√
36
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Rewrite each radical as a product of a perfect square and another number.

=

√
25 ·5√
6 ·6

=
5
√

5
6

In algebra, when simplifying quotients with radical, we often don’t want a radical in the denominator. The process
eliminating a radical from the denominator is often called ratioanlizing the denominator. We will see this process in
the next set of examples.

The same method can be applied to reduce radicals of different indices to their simplest form.

Example 4

Write the following expression in the simplest radical form.

a) 3√40

b)

√
125
27

c)
3√

135

Solution

In these cases we look for the highest possible perfect cube, fourth power, etc. as indicated by the index of the
radical.

a) Here we are looking for the product of the highest perfect cube and another number. We write

3√40 =
3√

8 ·5 =
3√

23 ·5 = 2
3√

5

b) Here we are looking for the product of the highest perfect fourth power and another number.

Rewrite as the quotient of two radicals

√
125
27

=

√
125√
27

Simplify each radical separately =

√
25 ·5√
9 ·3

=

√
25 ·
√

5√
9 ·
√

3
=

5
√

5
3
√

3

Eliminate the radical from the denominator =
5
√

5
3
√

3
·
√

3√
3
=

5
√

5 ·3
3
√

3 ·3
=

5
√

15
9

c) Here we are looking for the product of the highest perfect cube root and another number.

Often it is not very easy to identify the perfect root in the expression under the radical sign.

In this case, we can factor the number under the radical sign completely by using a factor tree.
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We see that 135 = 3 ·3 ·3 ·5 = 33 ·5

Therefore
3√

135 =
3√

33 ·5 =
3√

33 · 3√
5 = 3

3√
5

Here are some examples involving variables.

Example 5

Write the following expression in the simplest radical form.

a)
√

12x3y5

b) 4

√
1250x7

405y9

Solution

Treat constants and each variable separately and write each expression as the products of a perfect power as indicated
by the index of the radical and another number.

a)

Rewrite as a product of radicals.
√

12x3y5 =
√

12 ·
√

x3 ·
√

y5

Simplify each radical separately.
(√

4 ·3
)
·
(√

x2 · x
)
·
(√

y4 · y
)
=
(

2
√

3
)
·
(
x
√

x
)
·
(
y2√y

)
Combine all factors outside and inside the radical sign = 2xy2

√
3xy

b)

Rewrite as a quotient of radicals 4

√
1250x7

405y9 =

4√
1250x7

4
√

405y9

Simplify each radical separately =
4√625 ·2 · 4√

x4 · x3

4√81 ·5 · 4
√

y4 · y4 · y
=

5 4√2 · x · 4√
x3

3 4√5 · y · y · 4
√

y
=

5x
4√

2x3

3y2 4
√

5y

Eliminate the radical from the denominator =
5x

4√
2x3

3y2 4
√

5y
·

4
√

5 ·5 ·5 · y · y · y
4
√

5 ·5 ·5 · y · y · y
=

5x 4
√

250x3y3

15y3 =
x 4
√

250x3y3

3y3
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Add and Subtract Radical Expressions

When we add and subtract radical expressions, we can combine radical terms only when they have the same index
and the same expression under the radical sign. This is a similar procedure to combining like terms in variable
expressions. For example,

4
√

2+5
√

2 = 9
√

2

or

2
√

3−
√

2+5
√

3+10
√

2 = 7
√

3+9
√

2

It is important to simplify all radicals to their simplest form in order to make sure that we are combining all possible
like terms in the expression. For example, the expression

√
8− 2

√
50 looks like it cannot be simplified any more

because it has no like terms. However, when we write each radical in its simplest form we have

√
8−2

√
50 = 2

√
2−10

√
2 =−8

√
2

Notice how after simplify, we have like radicals because the index and radicand is the same.

If it is helpful we could factor our the
√

2

2
√

2−10
√

2 = (2−10)
√

2 =−8
√

2

Example 6

Simplify the following expressions as much as possible.

a) 4
√

3+2
√

12

b) 10
√

24−
√

28

Solution

a)

Simplify
√

12 to its simplest form. = 4
√

3+2
√

4 ·3 = 4
√

3+2 ·2
√

3 = 4
√

3+4
√

3

Combine like terms. = 8
√

3

b)

Simplify
√

24 and
√

28 to their simplest form. = 10
√

6 ·4−
√

7 ·4 = 20
√

6−2
√

7

There are no like terms.

Example 7

Simplify the following expressions as much as possible.

a) 4 3√128−3
3√

250

b) 3
√

x3−4x
√

9x

Solution
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a)

Rewrite radicals in simplest terms. = 4
3√

64 ·2− 3√
125 ·2 = 16

3√
2−5

3√
2

Combine like terms. = 11
3√

2

b)

Rewrite radicals in simplest terms. = 3
√

x2 · x−4x
√

9x = 3x
√

x−12x
√

x

Combine like terms. =−9x
√

x

Solve Real-World Problems Using Radical Expressions

Radicals often arise in problems involving areas and volumes of geometrical figures.

Example 10

The volume of a soda can is 355 cm3. The height of the can is four times the radius of the base. Find the radius of
the base of the cylinder.

Solution

1. Make a sketch.
2. Let x = the radius of the cylinder base
3. Write an equation.

The volume of a cylinder is given by

V = πr2 ·h

4. Solve the equation.

355 = πx2(4x)

355 = 4πx3

x3 =
355
4π

x =
3

√
355
4π

= 3.046 cm
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5. Check by substituting the result back into the formula.

V = πr2 ·h = π(3.046)2 · (4 ·3 ·046) = 355 cm3

So the volume is 355 cm3.

The answer checks.

Review Questions

Evaluate each radical expression.

1.
√

169
2. 4√81
3. 3√−125
4. 5√1024

Write each expression as a rational exponent.

5.
3√

14
6. 4
√

zw
7.
√

a
8. 9
√

y3

Write the following expressions in simplest radical form.

9.
√

24
10.
√

300
11.

5√
96

12.

√
240
567

13.
3√

500
14.

6√
64x8

15.
3√

48a3b7

16. 3

√
16x5

135y4

Simplify the following expressions as much as possible.

17. 3
√

8−6
√

32
18.
√

180+6
√

405
19.
√

6−
√

27+2
√

54+3
√

48
20.
√

8x3−4x
√

98x
21.
√

48a+
√

27a
22.

3√
4x3 + x

3√
256

23. The volume of a spherical balloon is 950 cm-cubed. Find the radius of the balloon. (Volume of a sphere
= 4

3 πR3).
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Review Answers

1. 13
2. not a real solution
3. -5
4. 4
5. 14

1
3

6. z
1
4 w

1
4

7. a
1
2

8. y
1
3

9. 2
√

6
10. 10

√
3

11. 2 5√3

12. 4
√

135
63

13. 5
3√

4
14. 2x

6√
x2

15. 2ab2 3√
3b

16. 2x
√

5x2y
15y2

17. −18
√

2
18. 60

√
5

19. 7
√

6+9
√

3
20. −26x

√
2x

21. 7
√

3a
22. 5x

3√
4

23. R = 6.1 cm
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5.3 Radical Expressions II

Learning objectives

• Multiply radical expressions.
• Rationalize the denominator.

Multiply Radical Expressions.

When we multiply radical expressions, we use the “raising a product to a power” rule m
√

x · y = m√x · m
√

y.

In this case we apply this rule in reverse. For example

√
6 ·
√

8 =
√

6 ·8 =
√

48

Make sure that the answer is written in simplest radical form

√
48 =

√
16 ·3 = 4

√
3

We will also make use of the fact that

√
a ·
√

a =
√

a2 = a.

When we multiply expressions that have numbers on both the outside and inside the radical, we treat the numbers
outside the radical and the numbers inside the radical separately.

For example

a
√

b · c
√

d = ac
√

bd.

Example 1

Multiply the following expressions.

a)
√

2
(√

3+
√

5
)

b)
√

5
(

5
√

3−2
√

5
)

c) 2
√

x
(
3
√

y−
√

x
)

Solution

In each case we use distribution to eliminate the parenthesis.

a)
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Distribute
√

2 inside the parenthesis.
√

2
(√

3+
√

5
)
=
√

2 ·
√

3+
√

2 ·
√

5

Use the raising a product to a power rule. =
√

2 ·3+
√

2 ·5
Simplify. =

√
6+
√

10

b)

Distribute
√

5 inside the parenthesis.
√

5
(

5
√

3−2
√

5
)
= 5
√

5 ·
√

3−2
√

5 ·
√

5

Multiply. 5
√

5 ·3−2
√

5 ·5 = 5
√

15−2
√

25

Simplify. 5
√

15−2 ·5 = 5
√

15−10

c)

Distribute 2
√

x inside the parenthesis. 2
√

x
(
3
√

y−
√

x
)

= (2 ·3)
(√

x · √y
)
−2 ·

(√
x ·
√

x
)

Multiply. = 6
√

xy−2
√

x2

Simplify. = 6
√

xy−2x

Example 2

Multiply the following expressions.

a)
(

2+
√

5
)(

2−
√

6
)

b)
(
2
√

x−1
)(

5−
√

x
)

Solution

In each case we use distribution to eliminate the parenthesis.

a)

Multiply.
(

2+
√

5
)(

2−
√

6
)
= (2 ·2)−

(
2 ·
√

6
)
+
(

2 ·
√

5
)
−
(√

5 ·
√

6
)

Simplify. 4−2
√

6+2
√

5−30

b)

Distribute.
(
2
√

x−1
)(

5−
√

x
)
= 10

√
x−2x−5+

√
x

Simplify. 11
√

x−2x−5

Example 3

Simplify.

a)
3
√√

x

b)
5
√√

x

Solution

a) Write using rational exponents.
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3
√√

x = (x
1
2 )

1
3

Since we have a power to a power, we multiply the exponents. (am)n = am·n

3
√√

x = (x
1
2 )

1
3 = x

1
6

Now write in radical form.

x
1
6 = 6√x

b) Write using rational exponents.

5
√√

x = (x
1
2 )

1
5

Since we have a power to a power, we multiply the exponents. (am)n = am·n

5
√√

x = (x
1
2 )

1
5 = x

1
10

Now write in radical form.

x
1

10 = 10√x

Example 4

Multiply and simplify.
3√x · 4√x

Solution

Write using rational exponents.

3√x · 4√x = x
1
3 · x

1
4

Since we are multiplying and the bases are the same, we add the exponents. (am) · (an) = am+n Notice we have to
obtain a common denominator for 1/3 and 1/4,w hich would be 12.

x
1
3 · x

1
4 = x

4
12 · x

3
12 = x

7
12

Now write in radical form.

x
7
12 =

12√
x7
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Rationalize the Denominator

Often when we work with radicals, we end up with a radical expression in the denominator of a fraction. We can
simplify such expressions even further by eliminating the radical expression from the denominator of the expression.
This process is called rationalizing the denominator.

There are two cases we will examine.

Case 1 There is a single radical expression in the denominator 2√
3

.

In this case, we multiply the numerator and denominator by a radical expression that makes the expression inside
the radical into a perfect power. In the example above, we multiply by the

√
3.

2√
3
·
√

3√
3
=

2
√

3
3

Next, let’s examine 7
3√5

.

In this case, we need to make the number inside the cube root a perfect cube. We need to multiply the numerator and
the denominator by

3√
52 since the index determines how many factors must be under the radical in the denominator

to simplify perfectly or make a perfect nth root.

7
3√5
·

3√
52

3√
52

=
7 3√25

3√
53

=
7 3√25

5

Case 2 The expression in the denominator is a radical expression that contains more than one term.

Consider the expression 2

2+
√

3

In order to eliminate the radical from the denominator, we multiply it by
(

2−
√

3
)

, which is the irrational conjugate

of (2+
√

3). This is a good choice because the product
(

2+
√

3
)(

2−
√

3
)

is a product of a sum and a difference
which multiplies as follows.

(
2+
√

3
)(

2−
√

3
)
= 22−

(√
3
)2

= 4−3 = 1

We multiply the numerator and denominator by
(

2−
√

3
)

and get

2
2+
√

3
· 2−

√
3

2−
√

3
=

2
(
2−
√

3
)

4−3
=

4−2
√

3
1

Now consider the expression
√

x−1√
x−2
√

y
.

In order to eliminate the radical expressions in the denominator, we must multiply by
√

x+2
√

y.

We obtain
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√
x−1√

x−2
√

y
·
√

x+2
√

y
√

x+2
√

y
=

(
√

x−1)
(√

x+2
√

y
)(√

x−2
√

y
)(√

x+2
√

y
)

=
x+2

√
xy−

√
x−2

√
y

4−4y

Review Questions

Multiply the following expressions.

1.
√

6
(√

10+
√

8
)

2.
(√

a−
√

b
)(√

a+
√

b
)

3.
(
2
√

x+5
)(

2
√

x+5
)

Simplify. 4. 4
√

6√x 5.
7
√√

x Multiply and simplify. 6. 4√x · 7√
x2 7.

√
x5 · 3√x

Simplify the quotients.

8. 7√
15

9. 9√
10

10. 2x√
5x

11.
√

5√
3y

12. 12

2−
√

5

13. 6−
√

3
4−
√

3
14. x√

2+
√

x

15. 5y
2
√

y−5

Review Answers

1. 2
√

15+4
√

3
2. a−b
3. 4x+20

√
x+25

4. 24√x
5. 14√x
6.

28√
x15

7.
6√

x17 = x2
√

x5

8. 7
√

15
15

9. 9
√

10
10

10. 2
√

5x
5

11.
√

15y
3y

12. −24−12
√

5

272

http://www.ck12.org


www.ck12.org Chapter 5. Radical Functions

13. 21+2
√

3
7

14. x
√

2−x
√

x
2−x

15.
10y
√

y+25y
4y−25
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5.4 Radical Equations

Learning Objectives

• Solve a radical equation.
• Solve radical equations with radicals on both sides.
• Identify extraneous solutions.
• Solve real-world problems using square root functions.

Introduction

When the variable in an equation appears inside a radical, the equation is called a radical equation. The first steps
in solving a radical equation are to perform operations that will eliminate the radical and change the equation into
a polynomial equation. A common method for solving radical equations is to isolate the most complicated radical
on one side of the equation and raise both sides of the equation to the power that will eliminate the radical and the
power will be determined by the index. If there are any radicals left in the equation after simplifying, we can repeat
this procedure until all radical are gone. Once the equation is changed into a polynomial equation, we can solve it
with the methods we already know.

We must be careful when we use this method, because whenever we raise an equation to a power, we could introduce
false solutions that are not in fact solutions to the original problem. These are called extraneous solutions. In order
to make sure we get the correct solutions, we must always check all solutions in the original radical equation.

Solve a Radical Equation

Let’s consider a few simple examples of radical equations where only one radical appears in the equation.

Example 1

Find the real solutions of the equation
√

2x−1 = 5.

Solution

Since the radical expression is already isolated, we square both sides of the equation in order to eliminate the radical
sign since the index of the square root is a 2.

(√
2x−1

)2
= 52

Remember that
(√

a
)2

= a so the equation simplifies to 2x−1 = 25

Add one to both sides. 2x = 26

Divide both sides by 2. x = 13

Finally, we need to plug the solution in the original equation to see if it is a valid solution.

√
2x−1 =

√
2(13)−1 =

√
26−1 =

√
25 = 5
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The answer checks.

Example 2

Find the real solutions of 3√3−7x−3 = 0.

Solution

We isolate the radical on one side of the equation.

3√3−7x = 3

Raise each side of the equation to the third power since the index of the square root is a 2.

(
3√3−7x

)3
= 33

Simplify.

3−7x = 27

Subtract 3 from each side.

−7x = 24

Divide both sides by -7.

x =−24
7

Check

3√3−7x−3 = 3

√
3−7

(
−24

7

)
−3 =

3√3+24−3 =
3√

27−3 = 3−3 = 0.

The answer checks.

Example 3

Find the real solutions of
√

10− x2− x = 2.

Solution
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We isolate the radical on one side of the equation.
√

10− x2 = 2+ x

Square each side of the equation.
(√

10− x2
)
= (2+ x)2

Simplify. 10− x2 = 4+4x+ x2

Move all terms to one side of the equation. 0 = 2x2 +4x−6

Factor out the GCF. 0 = 2(x2 +2x−3)

Factor. 0 = 2(x+3)(x−1)

Use the Zero Product Property to solve. x =−3 or x = 1

Check

√
10−12−1 =

√
9−1 = 3−1 = 2

The answer checks.

√
10− (−3)2− (−3) =

√
1+3 = 1+3 = 4 6= 2

This solution does not check.

The equation has only one solution, x = 1. The solution x =−3 is called an extraneous solution.

Solve Radical Equations with More than One Radical

Often equations have more than one radical expression. The strategy in this case is to isolate the most complicated
radical expression and raise the equation to the appropriate power determined by the index. We then repeat the
process until all radical signs are eliminated.

Example 4

Find the real roots of the equation
√

2x+1−
√

x−3 = 2.

Solution

Isolate one of the radical expressions

√
2x+1 = 2+

√
x−3

Square both sides

(√
2x+1

)2
=
(

2+
√

x−3
)2

Eliminate parentheses

2x+1 = 4+4
√

x−3+ x−3
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Simplify.

x = 4
√

x−3

Square both sides of the equation.

x2 =
(

4
√

x−3
)2

Eliminate parentheses.

x2 = 16(x−3)

Simplify.

x2 = 16x−48

Move all terms to one side of the equation.

x2−16x+48 = 0

Factor.

(x−12)(x−4) = 0

Solve.

x = 12 or x = 4

Check

√
2(12)+1−

√
12−3 =

√
25−

√
9 = 5−3 = 2

The solution checks out.

√
2(4)+1−

√
4−3 =

√
9−
√

1 = 3−1 = 2

The solution checks out.

The equation has two solutions: x = 12 and x = 4.
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Identify Extraneous Solutions to Radical Equations

We saw in Example 3 that some of the solutions that we find by solving radical equations do not check when
we substitute (or “plug in”) those solutions back into the original radical equation. These are called extraneous
solutions. It is very important to check the answers we obtain by plugging them back into the original equation. In
this way, we can distinguish between the real and the extraneous solutions of an equation.

Example 5

Find the real roots of the equation
√

x−3−
√

x = 1.

Solution

Isolate one of the radical expressions.

√
x−3 =

√
x+1

Square both sides.

(√
x−3

)2
=
(√

x+1
)2

Remove parenthesis.

x−3 =
(√

x
)2

+2
√

x+1

Isolate the radical again.

x−3 = x+2
√

x+1

Now isolate the remaining radical.

−4 = 2
√

x

Divide all terms by 2.

−2 =
√

x

Square both sides.

x = 4

Check

√
4−3−

√
4 =
√

1−2 = 1−2 =−1

The solution does not check ou.

The equation has no real solutions. Therefore, x = 4 is an extraneous solution.
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Solve Real-World Problems using Radical Equations

Radical equations often appear in problems involving areas and volumes of objects.

Example 6

The area of Anita’s square vegetable garden is 21 square-feet larger that Fred’s square vegetable garden. Anita and
Fred decide to pool their money together and buy the same kind of fencing for their gardens. If they need 84 feet of
fencing, what is the size of their gardens?

Solution

1. Make a sketch
2. Define variables

Let Fred’s area be x

Anita’s area x+21

The area of a square is equal to the length of one side squares.

A = s2

Therefore, if the area of a square is x, it following the length of one side would be
√

x.

From the given information, we can conclude the following:

Side length of Fred’s garden is
√

x

Side length of Anita’s garden is
√

x+21

3. Find an equation

The amount of fencing is equal to the combined perimeters of the two squares. The perimeter of a square is equal
to the length of the 4 equal sides.

P = 4s

Therefore Fred requires 4
√

x feet of fence and Anita requires 4
√

x+1 feet of fence. Therefore:

4
√

x+4
√

x+21 = 84

4. Solve the equation

Divide all terms by 4.
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√
x+
√

x+21 = 21

Isolate one of the radical expressions.

√
x+21 = 21−

√
x

Square both sides.

(√
x+21

)2
=
(
21−

√
x
)2

Eliminate parentheses.

x+21 = 441−42
√

x+ x

Isolate the radical expression.

42
√

x = 420

Divide both sides by 42.

√
x = 10

Square both sides.

x = 100 f t2

5. Check

4
√

100+4
√

100+21 = 40+44 = 84

The solution checks out.

Fred’s garden is 10 f t×10 f t = 100 f t2 and Anita’s garden is 11 f t×11 f t = 121 f t2.

Example 7

A sphere has a volume of 456 cm3. If the radius of the sphere is increased by 2 cm, what is the new volume of the
sphere?
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Solution

1. Make a sketch. Let’s draw a sphere.
2. Define variables. Let R = the radius of the sphere.
3. Find an equation.

The volume of a sphere is given by the formula:

V =
4
3

πr3

4. Solve the equation.

Plug in the value of the volume.

456 =
4
3

πr3

Multiply by 3.

1368 = 4πr3

Divide by 4π.

108.92 = r3

Take the cube root of each side.

r = 3√108.92⇒ r = 4.776 cm

The new radius is 2 centimeters more.

r = 6.776 cm
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The new volume is:

V =
4
3

π(6.776)3 = 1302.5 cm3

5. Check

Let’s substitute in the values of the radius into the volume formula.

V =
4
3

πr3 =
4
3

π(4.776)3 = 456 cm3.

The solution checks.

Example 8

The kinetic energy of an object of mass m and velocity v is given by the formula KE = 1
2 mv2. A baseball has a mass

of 145 kg and its kinetic energy is measured to be 654 Joules (1 Joule = 1 kg ·m2/s2) when it hits the catcher’s
glove. What is the velocity of the ball when it hits the catcher’s glove?

Solution

1. Start with the formula. KE = 1
2 mv2

2. Plug in the values for the mass and the kinetic energy. 654 kg·m2

s2 = 1
2(145 kg)v2

3. Multiply both sides by 2. 1308 kg·m2

s2 = (145 kg)v2

4. Divide both sides by 145 kg. 9.02 m2

s2 = v2

5. Take the square root of both sides. v =
√

9.02

√
m2

s2 = 3.003 m/s

6. Check Plug the values for the mass and the velocity into the energy formula.

KE =
1
2

mv2 =
1
2
(145 kg)(3.003 m/s)2 = 654 kg ·m2/s2

Review Questions

Find the solution to each of the following radical equations. Identify extraneous solutions.

1.
√

x+2−2 = 0
2.
√

3x−1 = 5
3. 2
√

4−3x+3 = 0
4. 3√x−3 = 1
5.

4
√

x2−9 = 2
6. 3√−2−5x+3 = 0
7.
√

x = x−6
8.
√

x2−5x−6 = 0
9.
√

(x+1)(x−3) = x
10.
√

x+6 = x+4
11.
√

x =
√

x−9+1
12.
√

3x+4 =−6
13.
√

10−5x+
√

1− x = 7
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14.
√

2x−2−2
√

x+2 = 0
15.
√

2x+5−3
√

2x−3 =
√

2− x
16. 3

√
x−9 =

√
2x−14

17. The area of a triangle is 24 in2 and the height of the triangle is twice as long and the base. What are the base
and the height of the triangle?

18. The area of a circular disk is 124 in2. What is the circumference of the disk? (Area = πr2,Circumference =
2πr).

19. The volume of a cylinder is 245 cm3 and the height of the cylinder is one third of the diameter of the base of
the cylinder. The diameter of the cylinder is kept the same, but the height of the cylinder is increased by two
centimeters. What is the volume of the new cylinder? (Volume = πr2 ·h)

20. The height of a golf ball as it travels through the air is given by the equation h =−16t2 +256. Find the time
when the ball is at a height of 120 feet.

Review Answers

1. x = 2
2. x = 26

3
3. No real solution, extraneous solution x = 7

12
4. x = 4
5. x = 5 or x =−5
6. x = 5
7. x = 9, extraneous solution x = 4
8. x = 9 or x =−4
9. No real solution, extraneous solution x =−3

2
10. x =−2, extraneous solution x =−5
11. x = 25
12. No real solution, extraneous solution x = 32

3
13. x =−3, extraneous solution x =−117

4
14. x = 9,x = 1
15. x = 2,x = 62

33
16. x = 25, extraneous solution x = 361

49
17. Base = 4.9 in,Height = 9.8 in
18. Circumference = 39.46 in
19. Volume = 394.94 cm3

20. Time = 2.9 seconds
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5.5 Imaginary and Complex Numbers

Learning Objectives

• Write square roots with negative radicands in terms of iDescribe the relationship between the sets of integers,
rational numbers, real numbers and complex numbers

Introduction

When working with quadratic equations, some quadratic equations have solutions that are not real. For example, an
equation such as:

x2 +1 = 0

does not have real solutions. No matter which method of solving quadratics we use, the solutions to that equation
are not real numbers.

x2 +1 = 0

x2 =−1

It is not possible to square a number and the result is negative. We say that x2+1 = 0 has no real solutions. However,
by introducing complex numbers we can solve such equations.

The Imaginary number i is the number whose square is -1. That is

i2 =−1

or

i =
√
−1

Recall that you can simplify radicals by factoring out perfect squares in the radicand. For instance,
√

8 =
√

4 ·2 =√
4
√

2 = 2
√

2. The same procedure works with i. If you have a negative number in the radicand, you can factor out
the -1 and use the identity i =

√
−1 to simplify.

Example: Simplify
√
−5

Solution:
√
−5 =

√
(−1) · (5)

=
√
−1
√

5

= i
√

5 or
√

5i

This also works in combination with the other method of factoring out perfect squares. See the following example.
Notice the i can go before the square root or after the square root. However, the i can not go under the square root.

Example: Simplify
√
−72
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Solution:
√
−72 =

√
(−1) · (72)

=
√
−1
√

72

= i
√

72

But, we’re not done yet. 72 = 36·2, so

i
√

72 = i
√

36
√

2

= i(6)
√

2

= 6i
√

2 or 6
√

2i

Review Questions

Simplify the following radicals

1.
√
−9

2.
√
−12

3.
√

140−108

4.
√
−17

5. 15−5
√
−11

5

6. 6+
√
−24

4

Review Answers

1. 3i
2. 2i

√
3

3. 4
√

2
4. i
√

17
5. 3− i

√
11

6. 3+i
√

6
2
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CHAPTER 6 Quadratic Functions
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6.6 REFERENCES

286

http://www.ck12.org


www.ck12.org Chapter 6. Quadratic Functions

6.1 Graphs of Quadratic Functions
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6.2 Solving Quadratic Equations by Graphing

Learning Objectives

• Identify the number of solutions of quadratic equations.
• Solve quadratic equations by graphing.
• Find or approximate zeros of quadratic functions.
• Analyze quadratic functions using a graphing calculators.
• Solve real-world problems by graphing quadratic functions.

Introduction

In the last, section you learned how to graph quadratic equations. You saw that finding the x−intercepts of a parabola
is important because it tells us where the graph crosses the x−axis. and it also lets us find the vertex of the parabola.
When we are asked to find the solutions of the quadratic equation in the form ax2 + bx+ c = 0, we are basically
asked to find the x−intercepts of the graph of the quadratic function.

Finding the x−intercepts of a parabola is also called finding the roots or zeros of the function.

Identify the Number of Solutions of Quadratic Equations

The graph of a quadratic equation is very useful in helping us identify how many solutions and what types of
solutions a function has. There are three different situations that occur when graphing a quadratic function.

Case 1 The parabola crosses the x−axis at two points.

An example of this is y = x2 + x−6.

We can find the solutions to equation x2 +x−6 = 0 by setting y = 0. We solve the equation by factoring (x+3)(x−
2) = 0 so x =−3 or x = 2.

Another way to find the solutions is to graph the function and read the x−intercepts from the graph. We see that the
parabola crosses the x−axis at x =−3 and x = 2.

When the graph of a quadratic function crosses the x−axis at two points, we get two distinct solutions to the
quadratic equation.
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Case 2 The parabola touches the x−axis at one point.

An example of this is y = x2−2x+1.

We can also solve this equation by factoring. If we set y = 0 and factor, we obtain (x−1)2 so x = 1.

Since the quadratic function is a perfect square, we obtain only one solution for the equation.

Above is what the graph of this function looks like. We see that the graph touches the x−axis at point x = 1.

When the graph of a quadratic function touches the x−axis at one point, the quadratic equation has one solution and
the solution is called a double root. We can say the root has multiplicity of 2.

Case 3 The parabola does not cross or touch the x−axis.

An example of this is y = x2 +4. If we set y = 0 we get x2 +4 = 0. This quadratic polynomial does not factor and
the equation x2 = −4 has no real solutions. When we look at the graph of this function, we see that the parabola
does not cross or touch the x−axis.

When the graph of a quadratic function does not cross or touch the x−axis, the quadratic equation has no real
solutions.

Solve Quadratic Equations by Graphing.

So far we have found the solutions to graphing equations using factoring. However, there are very few functions in
real life that factor easily. As you just saw, graphing the function gives a lot of information about the solutions. We
can find exact or approximate solutions to quadratic equations by graphing the function associated with it.

Example 1
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Find the solutions to the following quadratic equations by graphing.

a) −x2 +3 = 0

b) 2x2 +5x−7 = 0

c) −x2 + x−3 = 0

Solution

Let’s graph each equation. Unfortunately none of these functions can be rewritten in intercept form because we
cannot factor the right hand side. This means that you cannot find the x−intercept and vertex before graphing since
you have not learned methods other than factoring.

a) To find the solution to −x2 +3 = 0, we need to find the x−intercepts of y =−x2 +3.

Let’s make a table of values so we can graph the function.

y =−x2 +3

TABLE 6.1:

x y
−3 y =−(−3)2 +3 =−6
-2 y =−(−2)2 +3 =−1
-1 y =−(−1)2 +3 = 2
0 y =−(0)2 +3 = 3
1 y =−(−1)2 +3 = 2
2 y =−(2)2 +3 =−1
3 y =−(3)2 +3 =−6

We plot the points and get the following graph:

From the graph we can read that the x−intercepts are approximately x≈ 1.7 and x≈−1.7.

These are the solutions to the equation −x2 +3 = 0.

b) To solve the equation 2x2 +5x−7 = 0 we need to find the x−intercepts of y = 2x2 +5−7.

Let’s make a table of values so we can graph the function.

y = 2x2 +5x−7
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TABLE 6.2:

x y
−3 y = 2(−3)2 +5(−3)−7 =−4
-2 y = 2(−2)2 +5(−2)−7 =−9
-1 y = 2(−1)2 +5(−1)−7 =−10
0 y = 2(0)0 +5(0)−7 =−7
1 y = 2(1)2 +5(1)−7 = 0
2 y = 2(2)2 +5(2)−7 = 11
3 y = 2(3)2 +5(3)−7 = 26

We plot the points and get the following graph:

Since we can only see one x−intercept on this graph, we need to pick more points smaller than x =−3 and re-draw
the graph.

y = 2x2 +5x−7

TABLE 6.3:

x y
−5 y = 2(−5)2 +5(−5)−7 = 18
-4 y = 2(−4)2 +5(−4)−7 = 5

Here is the graph again with both x−intercepts showing:
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From the graph we can read that the x−intercepts are x = 1 and x =−3.5.

These are the solutions to equation 2x2 +5x−7 = 0.

c) To solve the equation −x2 + x−3 = 0 we need to find the x−intercepts of y =−x2 + x−3.

Let’s make a table of values so we can graph the function.

y =−x2 + x−3

TABLE 6.4:

x y
−3 y =−(−3)2 +(−3)−3 =−15
-2 y =−(−2)2 +(−2)−3 =−9
-1 y =−(−1)2 +(−1)−3 =−5
0 y =−(0)2 +(0)−3 =−3
1 y =−(1)2 +(1)−3 =−3
2 y =−(−2)2 +(2)−3 =−5
3 y =−(3)2 +(3)−3 =−9

We plot the points and get the following graph:

This graph has no x−intercepts, so the equation −x2 + x−3 = 0 has no real solutions.
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Find or Approximate Zeros of Quadratic Functions

From the graph of a quadratic function y = ax2 + bx+ c, we can find the roots or zeros of the function. The zeros
are also the x−intercepts of the graph, and they solve the equation ax2 +bx+ c = 0. When the zeros of the function
are integer values, it is easy to obtain exact values from reading the graph. When the zeros are not integers we must
approximate their value.

Let’s do more examples of finding zeros of quadratic functions.

Example 2 Find the zeros of the following quadratic functions.

a) y =−x2 +4x−4

b) y = 3x2−5x

Solution

a) Graph the function y =−x2 +4x−4 and read the values of the x−intercepts from the graph.

Let’s make a table of values.

y =−x2 +4x−4

TABLE 6.5:

x y
−3 y =−(−3)2 +4(−3)−4 =−25
-2 y =−(−2)2 +4(−2)−4 =−16
-1 y =−(−1)2 +4(−1)−4 =−9
0 y =−(0)2 +4(0)−4 =−4
1 y =−(1)2 +4(1)−4 =−1
2 y =−(2)2 +4(2)−4 = 0
3 y =−(3)2 +4(3)−4 =−1
4 y =−(4)2 +4(4)−4 =−4
5 y =−(5)2 +4(5)−4 =−9

Here is the graph of this function.

The function has a double root at x = 2.

b) Graph the function y = 3x2−5x and read the x−intercepts from the graph.
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Let’s make a table of values.

y = 3x2−5x

TABLE 6.6:

x y
−3 y = 3(−3)2−5(−3) = 42
-2 y = 3(−2)2−5(−2) = 22
-1 y = 3(−1)2−5(−1) = 8
0 y = 3(0)2−5(0) = 0
1 y = 3(1)2−5(1) =−2
2 y = 3(2)2−5(2) = 2
3 y = 3(3)2−5(3) = 12

Here is the graph of this function.

The function has two roots: x = 0 and x≈ 1.7.

Analyze Quadratic Functions Using a Graphing Calculator

A graphing calculator is very useful for graphing quadratic functions. Once the function is graphed, we can use the
calculator to find important information such as the roots of the function or the vertex of the function.

Example 3

Let’s use the graphing calculator to analyze the graph of y = x2−20x+35.

1. Graph the function.

Press the [Y=] button and enter “X2−20X +35” next to [Y1 =].(Note, X is one of the buttons on the calculator)
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Press the [GRAPH] button. This is the plot you should see. If this is not what you see change the window size. For
the graph above, we used window size of XMIN =−10,XMAX = 30 and YMIN =−80,YMAX = 50. To change
window size, press the [WINDOW] button.

Find the roots.

Use [2nd] [TRACE] (i.e. ’calc’ button) and use option ’zero’.

Move cursor to the left of one of the roots and press [ENTER].

Move cursor to the right of the same root and press [ENTER].

Move cursor close to the root and press [ENTER].

The screen will show the value of the root. For the left side root, we obtained x = 1.9.

Repeat the procedure for the other root. For the right side root, we obtained x = 18.

Find the vertex

Find the vertex.

Use [2nd] [TRACE] and use option ’maximum’ if the vertex is a maximum or option ’minimum’ if the vertex is a
minimum.

Move cursor to the left of the vertex and press [ENTER].

Move cursor to the right of the vertex and press [ENTER].

Move cursor close to the vertex and press [ENTER].

The screen will show the x and y values of the vertex.

For this example, we obtained x = 10 and x =−65.

Solve Real-World Problems by Graphing Quadratic Functions

We will now use the methods we learned so far to solve some examples of real-world problems using quadratic
functions.

Example 4 Projectile motion

Andrew is an avid archer. He launches an arrow that takes a parabolic path. Here is the equation of the height Oy)
of the ball with respect to time (t).

y =−4.9t2 +48t

Here y is the height in meters and t is the time in seconds. Find how long it takes the arrow to come back to the
ground.

Solution
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Let’s graph the equation by making a table of values.

y =−4.9t2 +48t

TABLE 6.7:

t y
0 y =−4.9(0)2 +48(0) = 0
1 y =−4.9(1)2 +48(1) = 43.1
2 y =−4.9(2)2 +48(2) = 76.4
3 y =−4.9(3)2 +48(3) = 99.9
4 y =−4.9(4)2 +48(4) = 113.6
5 y =−4.9(5)2 +48(5) = 117.5
6 y =−4.9(6)2 +48(6) = 111.6
7 y =−4.9(7)2 +48(7) = 95.9
8 y =−4.9(8)2 +48(8) = 70.4
9 y =−4.9(9)2 +48(9) = 35.1
10 y =−4.9(10)2 +48(10) =−10

Here is the graph of the function.

The roots of the function are approximately x = 0 sec and x = 9.8 sec. The first root says that at time 0 seconds the
height of the arrow is 0 meters. The second root says that it takes approximately 9.8 seconds for the arrow to return
back to the ground.

Review Questions

Find the solutions of the following equations by graphing.

1. x2 +3x+6 = 0
2. −2x2 + x+4 = 0
3. x2−9 = 0
4. x2 +6x+9 = 0
5. 10x−3x2 = 0
6. 1

2 x2−2x+3 = 0
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Find the roots of the following quadratic functions by graphing. 7. y = −3x2 + 4x− 1 8. y = 9− 4x2 9. y =
x2 +7x+2 10. y = −x2−10x−25 11. y = 2x2−3x 12. y = x2−2x+5Using your graphing calculator a.
Find the roots of the quadratic polynomials. b. Find the vertex of the quadratic polynomials. 13.
y = x2 + 12x+ 5 14. y = x2 + 3x+ 6 15. y = −x2− 3x+ 9 16. Peter throws a ball and it takes a parabolic path.
Here is the equation of the height of the ball with respect to time:

y =−16t2 +60t

. Here y is the height in feet and t is the time in seconds. Find how long it takes the ball to come back to the ground.
17. Use your graphing calculator to solve Ex. 5. You should get the same answers as we did graphing by hand but
a lot quicker!

Review Answers

1. No real solutions

2. x≈−1.2,x≈ 1.7

3. x =−3,x = 3
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4. x =−3 (double root or root with multiplicity of 2)

5. x = 0,x≈ 3.33

6. No real solutions.
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7. x≈ 0.33,x = 1

8. x =−1.5,x = 1.5

9. x =−6.67,x =−0.33

10. x =−5 (double root)
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11. x = 0,x = 1.5

12. No real solutions.

13. x ≈ -11.6 and x ≈ -0.4. Vertex (-6, -31)
14. No real solution. Vertex (-3/2, 15/4)
15. a) x≈−4.9 and x≈ 1.9 b) vertex: (−1.5,11.25)
16. time = 3.75 seconds

17. x≈ 9.8seconds
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6.3 Solving Quadratic Equations by Square
Roots

Learning objectives

• Solve quadratic equations involving perfect squares.
• Approximate solutions of quadratic equations.
• Solve real-world problems using quadratic functions and square roots.

Introduction

So far you know how to solve quadratic equations by factoring. However, this method works only if a quadratic
polynomial can be factored. Unfortunately, in practice, most quadratic polynomials are not factorable. In this
section you will continue learning new methods that can be used in solving quadratic equations. In particular, we
will examine equations in which we can take the square root of both sides of the equation in order to arrive at the
solution(s).

Solve Quadratic Equations Involving Perfect Squares

Let’s first examine quadratic equations of the type

x2− c = 0

We can solve this equation by isolating the x2 term: x2 = c

Once the x2 term is isolated we can take the square root of both sides of the equation since the x-term has degree 2.
Remember that when we take the square root we get two answers: the positive square root and the negative square
root:

x =
√

c and x =−
√

c

Often this is written as x =±
√

c.

For the equation

x2 + c = 0

We can solve this equation by isolating the x2 term: x2 =−c

Once the x2 term is isolated we can take the square root of both sides of the equation. Remember that when we take
the square root we get two answers: the positive square root and the negative square root:

x =
√
−c = i

√
c and x =−

√
−c = i

√
c
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Often this is written as x =±i
√

c.

Example 1

Solve the following quadratic equations.

a) x2−4 = 0

b) x2−25 = 0

Solution

a) x2−4 = 0

Isolate the x2 x2 = 4

Take the square root of both sides x =
√

4 and x =−
√

4

Answer x = 2 and x =−2

b) x2−25 = 0

Isolate the x2 x2 = 25

Take the square root of both sides x =
√

25 = 5 and x =−
√

25 =−5

Answer x = 5 and x =−5

Another type of equation where we can find the solution using the square root is

ax2− c = 0

We can solve this equation by isolating the x2 term

ax2 = c

x2 =
c
a

Now we can take the square root of both sides of the equation.

x =
√

c
a

and x =−
√

c
a

Often this is written as x =±
√

c
a

.

Example 2

Solve the following quadratic equations.

a) 9x2−16 = 0

b) 81x2−1 = 0

Solution

a) 9x2−16 = 0
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Isolate the x2. 9x2 = 16

x2 =
16
9

Take the square root of both sides. x =

√
16
9

= 4
3 and x =−

√
16
9

=−4
3

Answer: x = 4
3 and x =−4

3

b) 81x2−1 = 0

Isolate the x2 81x2 = 1

x2 =
1

81

Take the square root of both sides x =

√
1

81
= 1

9 and x =−
√

1
81

=−1
9

Answer x = 1
9 and x =−1

9

As you have seen previously, some quadratic equations have no real solutions.

Example 3

Solve the following quadratic equations.

a) x2 +1 = 0

b) 4x2 +9 = 0

Solution

a) x2 +1 = 0

Isolate the x2 x2 =−1

Take the square root of both sides: x =
√
−1 = i and x =−

√
−1 =−i or x =±i

Answer Square roots of negative numbers do not give real number results, so there are no real solutions to this
equation. The solutions are complex numbers.

b) 4x2 +9 = 0

Isolate the x2 4x2 =−9

x2 =−9
4

Take the square root of both sides x =

√
−9

4
= 3

2 i and x =−
√
−9

4
=−3

2 i

Answer There are no real solutions. The solutions are complex numbers.

We can also use the square root function in some quadratic equations where one side of the equation is a perfect
square. This is true if an equation is of the form
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(x−2)2 = 9

Both sides of the equation are perfect squares. We take the square root of both sides.

x−2 = 3 and x−2 =−3

Solve both equations

Answer x = 5 and x =−1

Notice if we graph set the eqaution equal to 0 by subtracting 9 on both sides we get:

(x−2)2−9 = 0

Now if we graph:

y = (x−2)2−9

the points where y = 0 are the x-values that solve our equation. The points on a function where y = 0, are the
x-intercepts. Notice the graph of y = (x−2)2−9 has x-intercepts of (5, 0) and (-1,0), which are also the solutions
to the equation. You can use this technique to check the solutions to quadratic equations as long as the quadratic
equation has real solutions. If a quadratic equation has complex solutions with an imaginary part, the graph will not
cross the x-axis.

Example 4

Solve the following quadratic equations.

a) (x−1)2 = 4

b) (x+3)2 =−16

Solution

a) (x−1)2 = 4

Take the square root of both sides. x−1 = 2 and x−1 =−2

Solve each equation. x = 3 and x =−1

Answer x = 3 and x =−1

b) (x+3)2 =−16

Take the square root of both sides. x+3 = 4i and x+3 =−4i

Solve each equation. x =−3+4i and x =−3−4i

It might be necessary to factor the left side of the equation as a perfect square before applying the method outlined
above.

Example 5

Solve the following quadratic equations.
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a) x2 +8x+16 = 25

b) 4x2−40x+25 =−9

Solution

a) x2 +8x+16 = 25

Factor the right hand side. x2 +8x+16 = (x+4)2 so (x+4)2 = 25

Take the square root of both sides. x+4 = 5 and x+4 =−5

Solve each equation. x = 1 and x =−9

Answer x = 1 and x =−9

b) 4x2−20x+25 =−9

Factor the right hand side. 4x2−20x+25 = (2x−5)2 so (2x−5)2 =−9

Take the square root of both sides. 2x−5 = 3i and 2x−5 =−3i

Solve each equation. 2x = 5+3i and 2x = 5−3i

x =
5+3i

2
and x =

5−3i
2

x =
5
2
+

3i
2

and x =
5
2
− 3i

2

Answer x = 5
2 +

3i
2 and x = 5

2 −
3i
2

Approximate Solutions of Quadratic Equations

We use the methods we learned so far in this section to find approximate solutions to quadratic equations. We can
get approximate solutions when taking the square root does not give an exact answer.

Example 6

Solve the following quadratic equations.

a) x2−3 = 0

b) 2x2−9 = 0

Solution

a)

Isolate the x2. x2 = 3

Take the square root of both sides. x =
√

3 and x =−
√

3

Answer x≈ 1.73 and x≈−1.73

b)

Isolate the x2. 2x2 = 9 so x2 =
9
2

Take the square root of both sides. x =

√
9
2
=

3√
2

and x =−
√

9
2
=− 3√

2
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Answer x≈ 2.12 and x≈−2.12

Example 7

Solve the following quadratic equations.

a) (2x+5)2 = 10

b) x2−2x+1 = 5

Solution.

a)

Take the square root of both sides. 2x+5 =
√

10 and 2x+5 =−
√

10

Solve both equations. x =
−5+

√
10

2
and x =

−5−
√

10
2

Answer x≈−0.92 and x≈−4.08

b)

Factor the right hand side. (x−1)2 = 5

Take the square root of both sides. x−1 =
√

5 and x−1 =−
√

5

Solve each equation. x = 1+
√

5 and x = 1−
√

5

Answer x≈ 3.24 and x≈−1.24

Solve Real-World Problems Using Quadratic Functions and Square Roots

There are many real-world problems that require the use of quadratic equations in order to arrive at the solution.
In this section, we will examine problems about objects falling under the influence of gravity. When objects are
dropped from a height, they have no initial velocity and the force that makes them move towards the ground is due
to gravity. The acceleration of gravity on earth is given by

g =−9.8 m/s2 or g =−32 f t/s2

The negative sign indicates a downward direction. We can assume that gravity is constant for the problems we will
be examining, because we will be staying close to the surface of the earth. The acceleration of gravity decreases as
an object moves very far from the earth. It is also different on other celestial bodies such as the Moon.

The equation that shows the height of an object in free fall is given by

y =
1
2

gt2 + y0

The term y0 represents the initial height of the object t is time, and g is the force of gravity. There are two choices
for the equation you can use.

y =−4.9t2 + y0 If you wish to have the height in meters.

y =−16t2 + y0 If you wish to have the height in feet.
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Example 8 Free fall

How long does it take a ball to fall from a roof to the ground 25 feet below?

Solution

Since we are given the height in feet, use equation y =−16t2 + y0

The initial height is y0 = 25 f eet, so y =−16t2 +25

The height when the ball hits the ground is y = 0, so 0 =−16t2 +25

Solve for t 16t2 = 25

t2 =
25
16

t =
5
4

or t =−5
4

We can discard the solution t =−5
4 since only positive values for time makes sense in this case,

Answer It takes the ball 1.25 seconds to fall to the ground.

Example 9 Free fall

A rock is dropped from the top of a cliff and strikes the ground 7.2 seconds later. How high is the cliff in meters?

Solution

Since we want the height in meters, use equation y =−4.9t2 + y0

The time of flight is t = 7.2 seconds y =−4.9(7.2)2 + y0

The height when the ball hits the ground is y = 0, so 0 =−4.9(7.2)2 + y0

Simplify 0 =−254+ y0 so y0 = 254

Answer The cliff is 254 meters high.

Example 10

Victor drops an apple out of a window on the 10th floor which is 120 feet above ground. One second later Juan drops
an orange out of a 6th floor window which is 72 feet above the ground. Which fruit reaches the ground first? What
is the time difference between the fruits’ arrival to the ground?

Solution Let’s find the time of flight for each piece of fruit.

For the Apple we have the following.

Since we have the height in feet, use equation y =−16t2 + y0

The initial height y0 = 120 f eet. y =−16t2 +120

The height when the ball hits the ground is y = 0, so 0 =−16t2 +120

Solve for t 16t2 = 120

t2 =
120
16

= 7.5

t = 2.74 or t =−2.74 seconds.

For the orange we have the following.
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The initial height y0 = 72 f eet. 0 =−16t2 +72

Solve for t. 16t2 = 72

t2 =
72
16

= 4.5

t = 2.12 or t =−2.12 seconds

But, don’t forget that the orange was thrown out one second later, so add one second to the time of the orange. It hit
the ground 3.12 seconds after Victor dropped the apple.

Answer The apple hits the ground first. It hits the ground 0.38 seconds before the orange. (Hopefully nobody was
on the ground at the time of this experiment.)

Review Questions

Solve the following quadratic equations.

1. x2−1 = 0
2. x2−100 = 0
3. x2 +16 = 0
4. 9x2−1 = 0
5. 4x2−49 = 0
6. 64x2−9 = 0
7. x2−81 = 0
8. 25x2−36 = 0
9. x2 +9 = 0

10. x2−16 = 0
11. x2−36 = 0
12. 16x2−49 = 0
13. (x−2)2 = 1
14. (x+5)2 = 16
15. (2x−1)2−4 = 0
16. (3x+4)2 = 9
17. (x−3)2 +25 = 0
18. x2−6 = 0
19. x2−20 = 0
20. 3x2 +14 = 0
21. (x−6)2 = 5
22. (4x+1)2−8 = 0
23. x2−10x+25 = 9
24. x2 +18x+81 = 1
25. 4x2−12x+9 = 16
26. (x+10)2 = 2
27. x2 +14x+49 = 3
28. 2(x+3)2 = 8
29. Susan drops her camera in the river from a bridge that is 400 feet high. How long is it before she hears the

splash?
30. It takes a rock 5.3 seconds to splash in the water when it is dropped from the top of a cliff. How high is the

cliff in meters?
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Review Answers

1. x = 1,x =−1
2. x = 10,x =−10
3. No real solution.
4. x = 1

3 ,x =−
1
3

5. x = 7
2 ,x =−

7
2

6. x = 3
8 ,x =−

3
8

7. x = 9,x =−9
8. x = 6

5 ,x =−
6
5

9. No real solution.
10. x = 4,x =−4
11. x = 6,x =−6
12. x = 7

4 ,x =−
7
4

13. x = 3,x = 1
14. x =−1,x =−9
15. x = 3

2 ,x =−
1
2

16. x =−1
3 ,x =−

7
3

17. No real solution.
18. x≈ 2.45,x≈−2.45
19. x≈ 4.47,x≈−4.47
20. No real solution.
21. x≈ 8.24,x≈ 3.76
22. x≈ 0.46,x≈−0.96
23. x = 8,x = 2
24. x =−8,x =−10
25. x = 7

2 ,x =−
1
2

26. x≈−8.59,x≈−11.41
27. x≈−5.27,x≈−8.73
28. x =−1,x =−5
29. t = 5 seconds
30. y0 = 137.6 meters
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6.4 Solving Quadratic Equations using the
Quadratic Formula

Learning objectives

• Solve quadratic equations using the quadratic formula.
• Identify and choose methods for solving quadratic equations.
• Solve real-world problems using functions by completing the square.

Introduction

In this section, you will solve quadratic equations using the Quadratic Formula. Most of you are already familiar
with this formula from previous mathematics courses. It is probably the most used method for solving quadratic
equations. For a quadratic equation in standard form

ax2 +bx+ c = 0

The solutions are found using the following formula.

x =
−b±

√
b2−4ac

2a

We will start by explaining where this formula comes from and then show how it is applied. This formula is derived
by solving a general quadratic equation using the method of completing the square that you learned in the previous
section.

Divide by the coefficient of the x2 term: x2 +
b
a

x =− c
a

Rewrite: x2 +2
(

b
2a

)
x =− c

a

Add the constant
(

b
2a

)2

to both sides: x2 +2
(

b
2a

)
x+
(

b
2a

)2

=− c
a
+

b2

4a2

Factor the perfect square trinomial:
(

x+
b
2a

)2

=−4ac
4a2 +

b2

4a2

Simplify:
(

x+
b
2a

)2

=
b2−4ac

4a2

Take the square root of both sides: x+
b

2a
=

√
b2−4ac

4a2 and x+
b
2a

=−
√

b2−4ac
4a2

Simplify: x+
b

2a
=

√
b2−4ac

2a
and x+

b
2a

=−
√

b2−4ac
2a

x =− b
2a

+

√
b2−4ac

2a
and x =− b

2a
−
√

b2−4ac
2a

x =
−b+

√
b2−4ac

2a
and x =

−b−
√

b2−4ac
2a
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This can be written more compactly as x = −b±
√

b2−4ac
2a .

You can see that the familiar formula comes directly from applying the method of completing the square. Applying
the method of completing the square to solve quadratic equations can be tedious. The quadratic formula is a more
straightforward way of finding the solutions.

Solve Quadratic Equations Using the Quadratic Formula

Applying the quadratic formula basically amounts to plugging the values of a,b and c into the quadratic formula.

Example 1

Solve the following quadratic equation using the quadratic formula.

a) 2x2 +3x+1 = 0

b) x2−6x+5 = 0

c) −4x2 + x+1 = 0

Solution

Start with the quadratic formula and plug in the values of a,b and c.

a)

Quadratic formula x =
−b±

√
b2−4ac

2a

Plug in the values a = 2,b = 3,c = 1. x =
−3±

√
(3)2−4(2)(1)
2(2)

Simplify. x =
−3±

√
9−8

4
=
−3±

√
1

4

Separate the two options. x =
−3+1

4
and x =

−3−1
4

Solve. x =
−2
4

=−1
2

and x =
−4
4

=−1

Answer x =−1
2 and x =−1

Remember you can check this soltuion by determine the x-intercepts of the quadratic function y = 2x2 +3x+1

b)

Quadratic formula. x =
−b±

√
b2−4ac

2a

Plug in the values a = 1,b =−6,c = 5. x =
−(−6)±

√
(−6)2−4(1)(5)
2(1)

Simplify. x =
6±
√

36−20
2

=
6±
√

16
2

Separate the two options. x =
6+4

2
and x =

6−4
2

Solve x =
10
2

= 5 and x =
2
2
= 1

Answer x = 5 and x = 1
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c)

Quadratic formula. x =
−b±

√
b2−4ac

2a

Plug in the values a =−4,b = 1,c = 1. x =
−1±

√
(1)2−4(−4)(1)
2(−4)

Simplify. x =
−1±

√
1+16

−8
=
−1±

√
17

−8

Separate the two options. x =
−1+

√
17

−8
and x =

−1−
√

17
−8

Often when we plug the values of the coefficients into the quadratic formula, we obtain a negative number inside the
square root. Since the square root of a negative number does not give real answers, we say that the equation has no
real solutions. In more advanced mathematics classes, you will learn how to work with “complex” (or “imaginary”)
solutions to quadratic equations.

Example 2

Solve the following quadratic equation using the quadratic formula x2 +2x+7 = 0

Solution:

Quadratic formula. x =
b±
√

b2−4ac
2a

Plug in the values a = 1,b = 2,c = 7. x =
−2±

√
(2)2−4(1)(7)
2(1)

Simplify. x =
−2±

√
4−28

2
=
−2±

√
−24

2

x =
−2±2i

√
6

2
=−1± i

√
6

To apply the quadratic formula, we must make sure that the equation is written in standard form. For some problems,
we must rewrite the equation before we apply the quadratic formula.

Example 3

Solve the following quadratic equation using the quadratic formula.

a) x2−6x = 10

b) 8x2 +5x =−6

Solution:
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a)

Rewrite the equation in standard form. x2−6x−10 = 0

Quadratic formula x =
−b±

√
b2−4ac

2a

Plug in the values a = 1,b =−6,c =−10. x =
−(−6)±

√
(−6)2−4(1)(−10)

2(1)

Simplify. x =
6±
√

36+40
2

=
6±
√

76
2

x =
6±2

√
19

2
= 3±

√
19

b)

Rewrite the equation in standard form. 8x2 +5x+6 = 0

Quadratic formula x =
−b±

√
b2−4ac

2a

Plug in the values a = 8,b = 5,c = 6. x =
−5±

√
(5)2−4(8)(6)
2(8)

Simplify. x =
−5±

√
25−192

16
=
−5±

√
−167

16
=
−5± i

√
167

16

Notice if we try to check this solution by graphing the quadratic function y = 8x2 +5x+6, the graph does not cross
the x-axis or have x-intercepts. This verifies we have complex solutions with an imaginary part.

Finding the Vertex of a Parabola with the Quadratic Formula

Sometimes you get more information from a formula beyond what you were originally seeking. In this case, the
quadratic formula also gives us an easy way to locate the vertex of a parabola.

First, recall that the quadratic formula tells us the roots or solutions of the equation ax2 +bx+ c = 0. Those roots
are

x =
−b±

√
b2−4ac

2a
.

We can rewrite the fraction in the quadratic formula as

x =− b
2a
±
√

b2−4ac
2a

.
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Recall that the roots are symmetric about the vertex. In the form above, we can see that the roots of a quadratic

equation are symmetric around the x−coordinate− b
2a because they move

√
b2−4ac

2a units to the left and right (recall
the ± sign) from the vertical line x = − b

2a . The image to the right illustrates this for the equation x2− 2x− 3 = 0.
The roots, -1 and 3 are both 2 units from the vertical line x = 1.

Identify and Choose Methods for Solving Quadratic Equations.

In mathematics, you will need to solve quadratic equations that describe application problems or that are part of
more complicated problems. You learned four ways of solving a quadratic equation.

• Factoring.
• Taking the square root.
• Completing the square.
• Quadratic formula.

Usually you will not be told which method to use. You will have to make that decision yourself. However, here are
some guidelines to which methods are better in different situations.

Factoring is always best if the quadratic expression is easily factorable. It is always worthwhile to check if you can
factor because this is the fastest method.

Taking the square root is best used when there is no x term in the equation.

Completing the square can be used to solve any quadratic equation. This is usually not any better than using
the quadratic formula (in terms of difficult computations), however it is a very important method for re-writing a
quadratic function in vertex form. It is also used to re-write the equations of circles, ellipses and hyperbolas in
standard form (something you will do in algebra II, trigonometry, physics, calculus, and beyond...).

Quadratic formula is the method that is used most often for solving a quadratic equation if solving directly by
taking square root and factoring does not work.

If you are using factoring or the quadratic formula make sure that the equation is in standard form.

Example 4

Solve each quadratic equation

a) x2−4x−5 = 0

b) x2 = 8

c) −4x2 + x = 2

d) 25x2−9 = 0

e) 3x2 = 8x

Solution

a) This expression if easily factorable so we can factor and apply the zero-product property:

Factor. (x−5)(x+1) = 0

Apply zero-product property. x−5 = 0 and x+1 = 0

Solve. x = 5 and x =−1

Answer x = 5 and x =−1

b) Since the expression is missing the x term we can take the square root:
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Take the square root of both sides. x =
√

8 and x =−
√

8

Answer x = 2.83 and x =−2.83

c) Rewrite the equation in standard form.

It is not apparent right away if the expression is factorable, so we will use the quadratic formula.

Quadratic formula x =
−b±

√
b2−4ac

2a

Plug in the values a =−4,b = 1,c =−2. x =
−1±

√
12−4(−4)(−2)
2(−4)

Simplify. x =
−1±

√
1−32

−8
=
−1±

√
−31

−8
=

1±
√

31i
8

Answer Two complex solutions: x = 1±
√

31i
8 = 1

8 ±
√

31
8 i

d) This problem can be solved easily either with factoring or taking the square root. Let’s take the square root in this
case.

Add 9 to both sides of the equation. 25x2 = 9

Divide both sides by 25. x2 =
9

25

Take the square root of both sides. x =

√
9
25

and x =−
√

9
25

Simplify. x =
3
5

and x =−3
5

Answer x = 3
5 and x =−3

5

e)

Rewrite the equation in standard form 3x2−8x = 0

Factor out common x term. x(3x−8) = 0

Set both terms to zero. x = 0 and 3x = 8

Solve. x = 0 and x =
8
3

Answer x = 0 and x = 8
3

Solve Real-World Problems Using Quadratic Functions by any Method

Here are some application problems that arise from number relationships and geometry applications.

Example 5

The product of two positive consecutive integers is 156. Find the integers.

Solution
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For two consecutive integers, one integer is one more than the other one.

Define

Let x = the smaller integer

x+1 = the next integer

Translate

The product of the two numbers is 156. We can write the equation:

x(x+1) = 156

Solve

x2 + x = 156

x2 + x−156 = 0

Apply the quadratic formula with a = 1,b = 1,c =−156

x =
−1±

√
12−4(1)(−156)

2(1)

x =
−1±

√
625

2
=
−1±25

2

x =
−1+25

2
and x =

−1−25
2

x =
24
2

= 12 and x =
−26

2
=−13

Since we are looking for positive integers take, x = 12

Answer 12 and 13

Check 12×13 = 156. The answer checks out.

Example 6

The length of a rectangular pool is 10 meters more than its width. The area of the pool is 875 square/meters. Find
the dimensions of the pool.

Solution:

Draw a sketch

Define

Let x = the width of the pool
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x+10 = the length of the pool

Translate

The area of a rectangle is A = length × width, so

x(x+10) = 875

Solve

x2 +10x = 875

x2 +10x−875 = 0

Apply the quadratic formula with a = 1,b = 10 and c =−875

x =
−10±

√
(10)2−4(1)(−875)

2(1)

x =
−10±

√
100+3500
2

x =
−10±

√
3600

2
=
−10±60

2

x =
−10+60

2
and x =

−10−60
2

x =
50
2

= 25 and x =
−70

2
=−35

Since the dimensions of the pools should be positive, then x = 25 meters.

Answer The pool is 25 meters×35 meters.

Check 25×35 = 875 m2. The answer checks out.

Example 7

Suzie wants to build a garden that has three separate rectangular sections. She wants to fence around the whole
garden and between each section as shown. The plot is twice as long as it is wide and the total area is 200 f t2. How
much fencing does Suzie need?

Solution

Draw a Sketch

Define
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Let x = the width of the plot

2x = the length of the plot

Translate

Area of a rectangle is A = length × width, so

x(2x) = 200

Solve

2x2 = 200

Solve by taking the square root.

x2 = 100

x =
√

100 and x =−
√

100

x = 10 and x =−10

We take x = 10 since only positive dimensions make sense.

The plot of land is 10 f eet×20 f eet.

To fence the garden the way Suzie wants, we need 2 lengths and 4 widths = 2(20)+4(10) = 80 f eet of fence.

Answer: The fence is 80 feet.

Check 10×20 = 200 f t2 and 2(20)+4(10) = 80 f eet. The answer checks out.

Example 8

An isosceles triangle is enclosed in a square so that its base coincides with one of the sides of the square and the
tip of the triangle touches the opposite side of the square. If the area of the triangle is 20 in2 what is the area of the
square?

Solution:

Draw a sketch.

Define

Let x = base of the triangle

x = height of the triangle
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Translate

Area of a triangle is 1
2 ×base×height, so

1
2
· x · x = 20

Solve

1
2

x2 = 20

Solve by taking the square root.

x2 = 40

x =
√

40 = 2
√

10 and x =−
√

40 =−2
√

10

x≈ 6.32 and x≈−6.32

The side of the square is approximately 6.32 inches.

The area of the square is (6.32)2 ≈ 40 in2, twice as big as the area of the triangle.

Answer: Area of the triangle is 40 in2

Check: It makes sense that the area of the square will be twice that of the triangle. If you look at the figure you can
see that you can fit two triangles inside the square.

FIGURE 6.1

The answer checks.
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Review Questions

Solve the following quadratic equations using the quadratic formula.

1. x2 +4x−21 = 0
2. x2−6x = 12
3. 3x2− 1

2 x = 3
8

4. 2x2 + x−3 = 0
5. −x2−7x+12 = 0
6. −3x2 +5x = 0
7. 4x2 = 0
8. x2 +2x+6 = 0

Solve the following quadratic equations using the method of your choice.

9. x2− x = 6

10. x2−12 = 0

11. −2x2 +5x−3 = 0

12. x2 +7x−18 = 0

13. 3x2 +6x =−10

14. −4x2 +4000x = 0

15. −3x2 +12x+1 = 0

16. x2 +6x+9 = 0

17. 81x2 +1 = 0

18. −4x2 +4x = 9

19. 36x2−21 = 0

20. x2−2x−3 = 0

21. The product of two consecutive integers is 72. Find the two numbers.

22. The product of two consecutive odd integers is 1 less than 3 times their sum. Find the integers.

23. The length of a rectangle exceeds its width by 3 inches. The area of the rectangle is 70 square inches, find its
dimensions.

24. Angel wants to cut off a square piece from the corner of a rectangular piece of plywood. The larger piece of
wood is 4 f eet×8 f eet and the cut off part is 1

3 of the total area of the plywood sheet. What is the length of the side
of the square?

25. Mike wants to fence three sides of a rectangular patio that is adjacent the back of his house. The area of the
patio is 192 f t2 and the length is 4 feet longer than the width. Find how much fencing Mike will need.
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Review Answers

1. x =−7,x = 3
2. x = 3±

√
21

3. x = 1
12 ±

√
19

12
4. x =−3

2 ,x = 1

5. x =−7
2 ±
√

97
2

6. x = 0,x = 5
3

7. x = 0
8. −1± i

√
5

9. x =−2,x = 3
10. x =±2

√
3

11. x = 1,x = 3
2

12. x =−9,x = 2

13. x =−1± i
√

21
3

14. x = 0,x = 1000

15. x = 2±
√

39
3

16. x =−3
17. x =±1

9 i
18. 1

2 ± i
√

2

19. x =±
√

21
6

20. x =−1,x = 3
21. 8 and 9
22. 5 and 7
23. 7 in and 10 in
24. side = 3.27 f t
25. 40 feet of fencing.
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6.5 The Discriminant

Learning Objectives

• Find the discriminant of a quadratic equation.
• Interpret the discriminant of a quadratic equation.
• Solve real-world problems using quadratic functions and interpreting the discriminant.

Introduction

The quadratic equation is ax2 +bx+ c = 0.

It can be solved using the quadratic formula x = −b±
√

b2−4ac
2a .

The expression inside the square root is called the discriminant, D = b2− 4ac. The discriminant can be used to
analyze the types of solutions of quadratic equations without actually solving the equation. Here are some guidelines.

• If b2−4ac > 0, we obtain two separate real solutions.
• If b2−4ac < 0, we obtain non-real solutions or two complex solutions.
• If b2−4ac = 0, we obtain one real solution, a double root or a root with multiplicity 2.

Find the Discriminant of a Quadratic Equation

To find the discriminant of a quadratic equation, we calculate D = b2−4ac.

Example 1

Find the discriminant of each quadratic equation. Then tell how many solutions there will be to the quadratic
equation without solving.

a) x2−5x+3 = 0

b) 4x2−4x+1 = 0

c) −2x2 + x = 4

Solution:

a) Substitute a = 1,b =−5 and c = 3 into the discriminant formula D = (−5)2−4(1)(3) = 13.

There are two real solutions because D > 0.

b) Substitute a = 4,b =−4 and c = 1 into the discriminant formula D = (−4)2−4(4)(1) = 0.

There is one real solution because D = 0.

c) Rewrite the equation in standard form −2x2 + x−4 = 0.

Substitute a =−2,b = 1 and c =−4 into the discriminant formula: D = (1)2−4(−2)(−4) =−31.

There are no real solutions because D < 0.
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Interpret the Discriminant of a Quadratic Equation

The sign of the discriminant tells us the nature of the solutions (or roots) of a quadratic equation. We can obtain two
distinct real solutions if D > 0 (If D is a perfect square, there are 2 real rational solutions, If D is not a perfect square,
there are two irrational real solutions.), no real solutions if D < 0 or one solution (called a “double root”) if D = 0.
Recall that the number of solutions of a quadratic equation tell us how many times a parabola crosses the x−axis.

D = 0

D > 0
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D < 0

Example 2

Determine the nature of solutions of each quadratic equation.

a) 4x2−1 = 0

b) 10x2−3x =−4

c) x2−10x+25 = 0

d) −3x2 +4x+1 = 0

Solution

Use the value of the discriminant to determine the nature of the solutions to the quadratic equation.

a) Substitute a = 4,b = 0 and c =−1 into the discriminant formula D = (0)2−4(4)(−1) = 16.

The discriminant is positive, so the equation has two distinct real solutions.

The solutions to the equation are: 0±
√

16
8 =±4

8 =±1
2 .

b) Rewrite the equation in standard form 10x2−3x+4 = 0.

Substitute a = 10,b =−3 and c = 4 into the discriminant formula D = (−3)2−4(10)(4) =−151.

The discriminant is negative, so the equation has two non-real solutions or two complex solutions.

c) Substitute a = 1,b =−10and c = 25into the discriminant formula D = (−10)2−4(1)(25) = 0.

The discriminant is 0, so the equation has a double root.

The solution to the equation is 10±
√

0
2 = 10

2 = 5.

If the discriminant is a perfect square, then the solutions to the equation are rational numbers.

d) Substitute a =−3,b = 4 and c = 1 into the discriminant formula D = (4)2−4(−3)(1) = 28.

The discriminant is a positive but not a perfect square, so the solutions are two real irrational numbers.

The solutions to the equation are −2±
√

28
−6 = 1

3 ±
√

7
3 so, x≈−0.55 and x≈ 1.22.

Example 3

Determine the nature of the solutions to each quadratic equation.

a) 2x2 + x−3 = 0

b) 5x2− x−1 = 0

Solution

Use the discriminant to determine the nature of the solutions.

a) Plug a = 2, b = 1 and c =−3 into the discriminant formula: D = (1)2−4(2)(−3) = 25

The discriminant is a positive perfect square, so the solutions are two real rational numbers.

The solutions to the equation are: −1±
√

25
4 = −1±5

4 , so x = 1 and x =−3
2 .

b) Plug a = 5, b =−1 and c =−1 into the discriminant formula: D = (−1)2−4(5)(−1) = 21

The discriminant is positive but not a perfect square, so the solutions are two real irrational numbers.

The solutions to the equation are: 1±
√

21
10 , so x≈ 0.56 and x≈−0.36.
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Solve Real-World Problems Using Quadratic Functions and Interpreting the Discriminant

You saw that calculating the discriminant shows what types of solutions a quadratic equation possesses. Knowing
the types of solutions is very useful in applied problems. Consider the following situation.

Example 4

Marcus kicks a football in order to score a field goal. The height of the ball is given by the equation y =− 32
6400 x2+x

where y is the height and x is the horizontal distance the ball travels. We want to know if he kicked the ball hard
enough to go over the goal post which is 10 feet high.

Solution

Define

Let y = height of the ball in feet

x = distance from the ball to the goalpost.

Translate We want to know if it is possible for the height of the ball to equal 10 feet at some real distance from the
goalpost.

10 =− 32
6400

x2 + x

Solve

Write the equation in standard form. − 32
6400

x2 + x−10 = 0

Simplify. −0.005x2 + x−10 = 0

Find the discriminant. D = (1)2−4(−0.005)(−10) = 0.8

Since the discriminant is positive, we know that it is possible for the ball to go over the goal post, if Marcus kicks
it from an acceptable distance x from the goal post. From what distance can he score a field goal? See the next
example.

Example 4 (continuation)

What is the farthest distance that he can kick the ball from and still make it over the goal post?

Solution

We need to solve for the value of x by using the quadratic formula.

x =
−1±

√
0.8

−0.01
≈ 10.6 or 189.4

This means that Marcus has to be closer that 189.4 feet or further than 10.6 feet to make the goal. (Why are there
two solutions to this equation? Think about the path of a ball after it is kicked).

Example 5

Emma and Bradon own a factory that produces bike helmets. Their accountant says that their profit per year is given
by the function

P = 0.003x2 +12x+27760
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In this equation x is the number of helmets produced. Their goal is to make a profit of $40,000 this year. Is this
possible?

Solution

We want to know if it is possible for the profit to equal $40,000.

40000 =−0.003x2 +12x+27760

Solve

Write the equation in standard form −0.003x2 +12x−12240 = 0

Find the discriminant. D = (12)2−4(−0.003)(−12240) =−2.88

Since the discriminant is negative, we know that there are no real solutions to this equation. Thus, it is not possible
for Emma and Bradon to make a profit of $40,000 this year no matter how many helmets they make.

Review Questions

Find the discriminant of each quadratic equation.

1. 2x2−4x+5 = 0
2. x2−5x = 8
3. 4x2−12x+9 = 0
4. x2 +3x+2 = 0
5. x2−16x = 32
6. −5x2 +5x−6 = 0

Determine the nature of the solutions of each quadratic equation.

7. −x2 +3x−6 = 0
8. 5x2 = 6x
9. 41x2−31x−52 = 0

10. x2−8x+16 = 0
11. −x2 +3x−10 = 0
12. x2−64 = 0

Without solving the equation, determine whether the solutions will be rational or irrational.

13. x2 =−4x+20
14. x2 +2x−3 = 0
15. 3x2−11x = 10
16. 1

2 x2 +2x+ 2
3 = 0

17. x2−10x+25 = 0
18. x2 = 5x
19. Marty is outside his apartment building. He needs to give Yolanda her cell phone but he does not have time to

run upstairs to the third floor to give it to her. He throws it straight up with a vertical velocity of 55 feet/second.
Will the phone reach her if she is 36 feet up?
(Hint: The equation for the height is given by y =−32t2 +55t +4.)

20. Bryson owns a business that manufactures and sells tires. The revenue from selling the tires in the month of
July is given by the function R = x(200− 0.4x) where x is the number of tires sold. Can Bryson’s business
generate revenue of $20,000 in the month of July?
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Review Answers

1. D =−24
2. D = 57
3. D = 0
4. D = 1
5. D = 384
6. D =−95
7. D =−15 no real solutions
8. D = 36 two real solutions
9. D = 9489 two real solutions

10. D = 0 one real solutions
11. D =−31 no real solutions
12. D = 256 two real solutions
13. D = 96 two real irrational solutions
14. D = 16 two real rational solutions
15. D = 241 two real irrational solutions
16. D = 8

3 two real irrational solutions
17. D = 0 one real rational solution
18. D = 25 two real rational solutions
19. no
20. yes
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