A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T, and the set \mathbb{R}^m is called the **codomain** of T. The notation $T : \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain of T is \mathbb{R}^m . For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ is called the **image** of \mathbf{x} under T. The set of all images $T(\mathbf{x})$ is called the range of T.

Let **u** and **v** be in the domain of *T*, and let *c* be any scalar. The transformation *T* is **linear** if and only if (1) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and (2) $T(c\mathbf{u}) = cT(\mathbf{u})$.

If T is a linear transformation, then (1) $T(\mathbf{0}) = \mathbf{0}$ and (2) $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$.

Theorem Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There exists a unique matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . The matrix A is the $m \times n$ matrix whose *j*th column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the *j*th column of the identity matrix in \mathbb{R}^n .

This matrix A is called the standard matrix for the linear transformation T.

Definition A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

That is, the range of T is all of the codomain \mathbb{R}^m . That is, T is onto \mathbb{R}^m if, for each **b** in \mathbb{R}^m , there is at least one solution to $T(\mathbf{x}) = \mathbf{b}$. The mapping T is not onto when there is some **b** in \mathbb{R}^m for which the equation $T(\mathbf{x}) = \mathbf{b}$ has no solution.

Definition A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n .

That is, T is one-to-one if, for each **b** in \mathbb{R}^m , the equation $T(\mathbf{x}) = \mathbf{b}$ has either a unique solution or no solution. The mapping T is not one-to-one when some **b** in \mathbb{R}^m is the image of more than one vector in \mathbb{R}^n .

Theorem Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Note that the equations $T(\mathbf{x}) = \mathbf{0}$ and $A\mathbf{x} = \mathbf{0}$ are the same except for notation. The theorem above then states that T is one-to-one if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. This is the case if and only if the columns of A are linearly independent.

Theorem Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then (1) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m and (2) T is one-toone if and only if the columns of A are linearly independent.

Example Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Determine if T is a one-to-one linear transformation. Determine if T maps \mathbb{R}^2 onto \mathbb{R}^3 .