A transformation (or function or mapping) $T$ from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$ is a rule that assigns to each vector $\mathbf{x}$ in $\mathbb{R}^{n}$ a vector $T(\mathbf{x})$ in $\mathbb{R}^{m}$. The set $\mathbb{R}^{n}$ is called the domain of $T$, and the set $\mathbb{R}^{m}$ is called the codomain of $T$. The notation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ indicates that the domain of $T$ is $\mathbb{R}^{n}$ and the codomain of $T$ is $\mathbb{R}^{m}$. For $\mathbf{x}$ in $\mathbb{R}^{n}$, the vector $T(\mathbf{x})$ is called the image of $\mathbf{x}$ under $T$. The set of all images $T(\mathbf{x})$ is called the range of $T$.

Let $\mathbf{u}$ and $\mathbf{v}$ be in the domain of $T$, and let $c$ be any scalar. The transformation $T$ is linear if and only if (1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ and (2) $T(c \mathbf{u})=c T(\mathbf{u})$.

If $T$ is a linear transformation, then (1) $T(\mathbf{0})=\mathbf{0}$ and (2) $T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})$.

Theorem Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique matrix $A$ such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x}$ in $\mathbb{R}^{n}$. The matrix $A$ is the $m \times n$ matrix whose $j$ th column is the vector $T\left(\mathbf{e}_{j}\right)$, where $\mathbf{e}_{j}$ is the $j$ th column of the identity matrix in $\mathbb{R}^{n}$.

This matrix $A$ is called the standard matrix for the linear transformation $T$.

Definition A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto $\mathbb{R}^{m}$ if each $\mathbf{b}$ in $\mathbb{R}^{m}$ is the image of at least one $\mathbf{x}$ in $\mathbb{R}^{n}$.

That is, the range of $T$ is all of the codomain $\mathbb{R}^{m}$. That is, $T$ is onto $\mathbb{R}^{m}$ if, for each $\mathbf{b}$ in $\mathbb{R}^{m}$, there is at least one solution to $T(\mathbf{x})=\mathbf{b}$. The mapping $T$ is not onto when there is some $\mathbf{b}$ in $\mathbb{R}^{m}$ for which the equation $T(\mathbf{x})=\mathbf{b}$ has no solution.

Definition A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one if each $\mathbf{b}$ in $\mathbb{R}^{m}$ is the image of at most one $\mathbf{x}$ in $\mathbb{R}^{n}$.

That is, $T$ is one-to-one if, for each $\mathbf{b}$ in $\mathbb{R}^{m}$, the equation $T(\mathbf{x})=\mathbf{b}$ has either a unique solution or no solution. The mapping $T$ is not one-to-one when some $\mathbf{b}$ in $\mathbb{R}^{m}$ is the image of more than one vector in $\mathbb{R}^{n}$.

## MATH 270: Linear Algebra

Theorem Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. $T$ is one-to-one if and only if the equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Note that the equations $T(\mathbf{x})=\mathbf{0}$ and $A \mathbf{x}=\mathbf{0}$ are the same except for notation. The theorem above then states that $T$ is one-to-one if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. This is the case if and only if the columns of $A$ are linearly independent.

Theorem Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let $A$ be the standard matrix for $T$. Then (1) $T$ maps $\mathbb{R}^{n}$ onto $\mathbb{R}^{m}$ if and only if the columns of $A$ span $\mathbb{R}^{m}$ and (2) $T$ is one-toone if and only if the columns of $A$ are linearly independent.

Example Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Determine if $T$ is a one-to-one linear transformation. Determine if $T$ maps $\mathbb{R}^{2}$ onto $\mathbb{R}^{3}$.

