Given vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ in \mathbb{R}^{n} and given scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector \mathbf{y} defined by

$$
\mathbf{y}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{p} \mathbf{v}_{\mathbf{p}}
$$

is called a linear combination of the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ with weights $c_{1}, c_{2}, \ldots, c_{p}$.

A vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{p} \mathbf{a}_{\mathbf{p}}=\mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{\mathbf{p}} & \mathbf{b}\end{array}\right]$. In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{p}}$ if and only if there is a solution to the linear system corresponding to $\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{\mathrm{p}} & \mathbf{b}\end{array}\right]$.

If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ in \mathbb{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ is called the subset of \mathbb{R}^{n} spanned (or generated) by $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{p}}$, denoted $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathrm{p}}\right\}$.

That is, a vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ if \mathbf{b} is a linear combination of vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$.

Consider the vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{3} such that \mathbf{u} is not a multiple of \mathbf{v}. Span $\{\mathbf{v}\}$ is the set of scalar multiples of \mathbf{v}, and can be visualized as the set of points in \mathbb{R}^{3} on the line through \mathbf{v} and $\mathbf{0}$. Span $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^{3} that contains \mathbf{u}, \mathbf{v} and $\mathbf{0}$.

If A is an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}$ and if \mathbf{x} is in \mathbb{R}^{n}, the product of A and \mathbf{x}, denoted $A \mathbf{x}$, is the linear combination of the columns of A using the corresponding entries of \mathbf{x} as weights. That is,

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{\mathbf{n}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots x_{n} \mathbf{a}_{n}
$$

Note that $A \mathbf{x}$ is defined only if the number of columns of A equals the number of entries in \mathbf{x}.

If A is an $m \times n$ with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}$ and if \mathbf{b} is in \mathbb{R}^{m}, the matrix equation $A \mathbf{x}=\mathbf{b}$ has the same solution as the vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots x_{n} \mathbf{a}_{n}=\mathbf{b}$ which has the same solution set as the linear system whose augmented matrix is $\left[\begin{array}{llll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n} & \mathbf{b}\end{array}\right]$.

Let A be an $m \times n$ matrix. The following are logically equivalent. That is, for a particular matrix A, they are either all true or all false.

1. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
2. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
3. The columns of A span \mathbb{R}^{m}.
4. A has a pivot position in every row.
