A linear equation in variables $x_{1}, x_{2}, \ldots, x_{n}$ is an equation of the form $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b$, where b and the coefficients $a_{1}, a_{2}, \ldots, a_{n}$ are real or complex numbers, usually known in advance. The subscript n can be any positive integer.

A system of linear equations (linear system) is a collection of one or more linear equations involving the same variables.

A solution of the system is a list of numbers $s_{1}, s_{2}, \ldots, s_{n}$ that makes each equation a true statement when substituted for $x_{1}, x_{2}, \ldots, x_{n}$, respectively. The set of all possible solutions is the solution set of the system. Two linear systems are equivalent if they have the same solution set.

A system of linear equations is said to be inconsistent if it has no solution. It is consistent if it has either one solution or infinitely many solutions.

Consider the linear system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned} .
$$

The matrix

$$
\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 2 & -8 \\
-4 & 5 & 9
\end{array}\right]
$$

is called the coefficient matrix of the system. The matrix

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

is called the augmented matrix of the system. The size of a matrix indicates the number of rows and columns a matrix has. An $m \times n$ matrix is a rectangular array of numbers with m rows and n columns.

