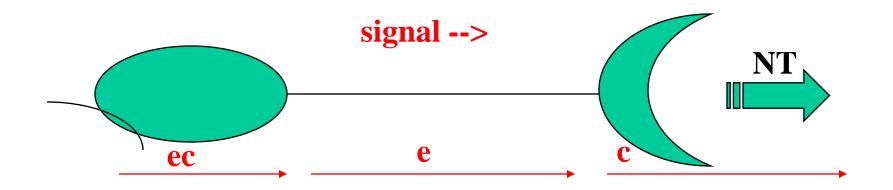
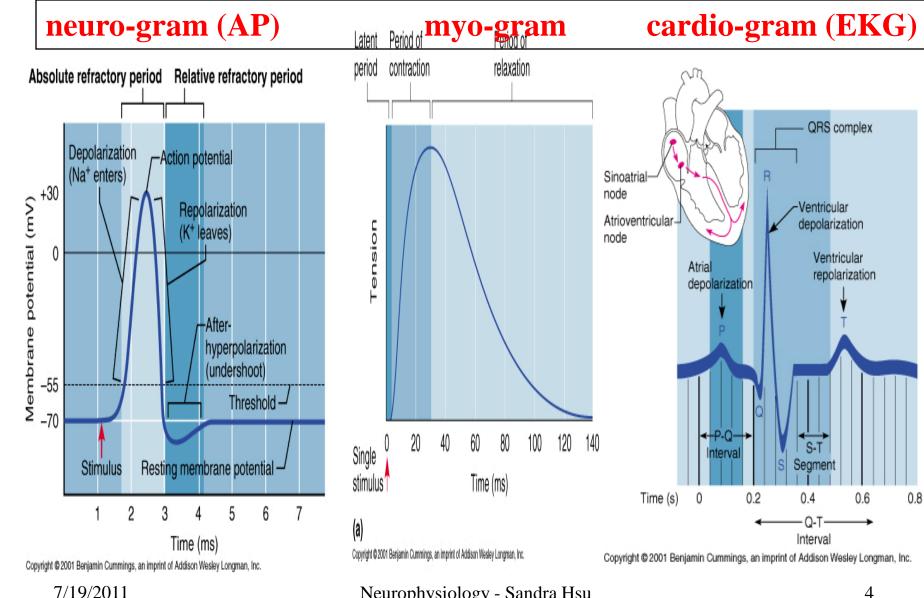

Nervous Sys. Org. (1)


Copyright © 2010 Pearson Education, Inc.

Neuron Diagram

cell: dendrite soma axon axon term. syn. cleft signal: receive receive/integ. transmit relay to next cell(s)


Neuron - Signal Review

signal transmission:

ec	e	C
- electro-chem	electrical	chemical
- EPSP, IPSP	- AP	- NT

Sample Elec. Recordings

Neurophysiology - Sandra Hsu

4 Phases

- 1) **RMP** (resting membrane potential)
 - = rest state
 - active transport: Na+ out, K+ in
- 2) DEP (depolarize) = change polarity - diffusion: Na+ in
- 3) REP (repolarize)
 - = return to original polarity
 - diffusion: K+ out
- 4) HYP (hyperpolarize)
 - = excess return to original polarity
 - diffusion: K+ out

Ion Flow Review

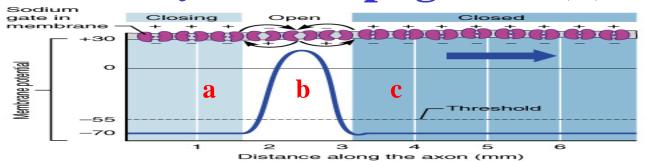
	RMP	DEP	REP	HYP
1) forces	act. tran.	diff.	diff.	diff.
2) flow	Na out, K in	Na in	K out	K out
3) gates	Na closed K closed	Na open K closed	Na closed K open	Na closed K closed
4) resist.	none	absolute	absolute	relative
5) polarity	out: + in: -	out: - in: +	out: + in: -	out: + in: -

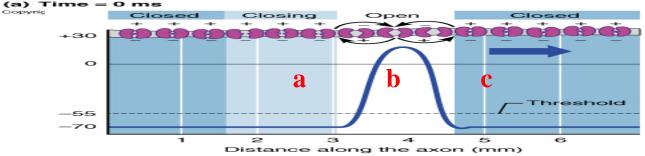
AP - Resistance

refractory period = when 2nd stimulus cannot be accepted

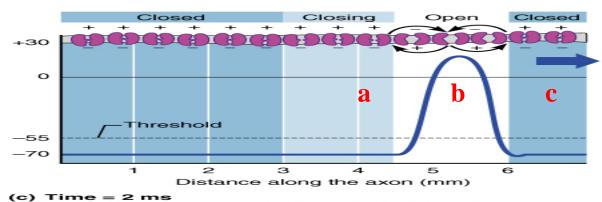
a) absolute refractory period

- no response to 2nd stim.
- 1st msec
- initial RMP, DEP, initial REP
- **b) relative refractory period**
 - limited response to 2nd stim.
 - 2nd to 4th ms*
 - late REP, HYP, late RMP


*older text: AP = 3 ms; new text: AP = 4 ms


Propagation Regions

3 regions along length of axon:


- a) Na closing region (REP/HYP)
 - = refractory region
 - Na gates closing
 - K gates open $\rightarrow \uparrow K$ exflux (diffusion)
- b) Na opening region (DEP)
 - = depolarizing region
 - Na gate open $\rightarrow \uparrow$ Na influx (diffusion)
 - K gates closed
- c) Na closed region (RMP)
 - = next stimulating region
 - Na & K gates closed
 - Na-K pump active: Na out; K in

Unmyelin. Propagation (2)

⁽b) Time = 1 ms Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Fiber Types

feature	Α	B	С
1) diameter	thick	intermed.	thin
2) myelin	thick	thin	none
3) location	SNS sensory	sensory	ANS sensory
4) cond. speed	fast 150 m/s 300 mph	intermed. 15 m/s 40 mph	slow 1 m/s 2 mph
5) cond. type	saltatory	both	continuous

AP & PSP Comparison

1) function	AP long dist. signal	EPSP short dist. signal	<mark>IPSP</mark> short dist. signal
2) amplitude	same	graded	graded
3) gate	voltreg	chem-reg	chem-reg
4) stimulus	@-55 mV	excit. NT	inhib. NT
5) ion flow	4 phases:	sim. dif. net: Na ⁺ in	sim. dif. net: K ⁺ out
6) cell effect	axon depol.	soma depol.	soma hyperpol.
7/19/2011	Neurophysiol	ogy - Sandra Hsu	11

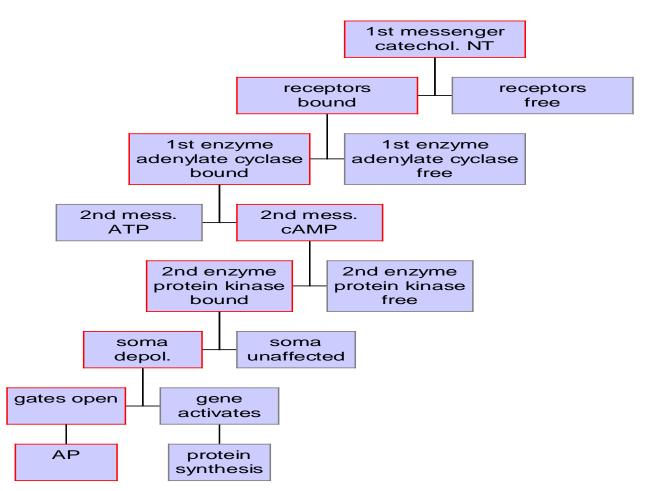
ACh - drugs, diseases

3) drugs:

cholinergic drugs

- a) \downarrow postsynaptic AP \rightarrow weak muscles, paralysis
 - 1) botulinus toxin (bacteria) inhibit ACh release
 - 2) curare (tree resin) competes for ACh receptors
 - 3) saxitoxin (red tide bacteria) blocks NA gates
- b) ↑postsynaptic AP → overactive muscles, spasms
 1) nerve gas (synthetic) inhibits AChE release

4) diseases:


- a) myasthenia gravis \downarrow chol. muscle receptors $\rightarrow \downarrow$ AP \rightarrow muscle atrophy (deteriorate)
- b) Alzheimer \downarrow chol. CNS neurons $\rightarrow \downarrow AP$ \rightarrow mental deterioation

Biogenic Amines - feature

- 1) features
 - excitatory & inhibitory NT
 - removal methods:
 - a) presynaptic cell reuptake
 - b) presynaptic cell deactivation (MAO)
 - c) postsynaptic cell deactivation (COMT)
 - 2 types:
 - a) catecholamines (dopamine, epi/nor-epi)
 - b) indolamines (serotonin, histamine)
 - mechanism:
 - 2nd messenger/enzyme activ. sequence

Enzyme Activation Sequence

Catecholamine Effect

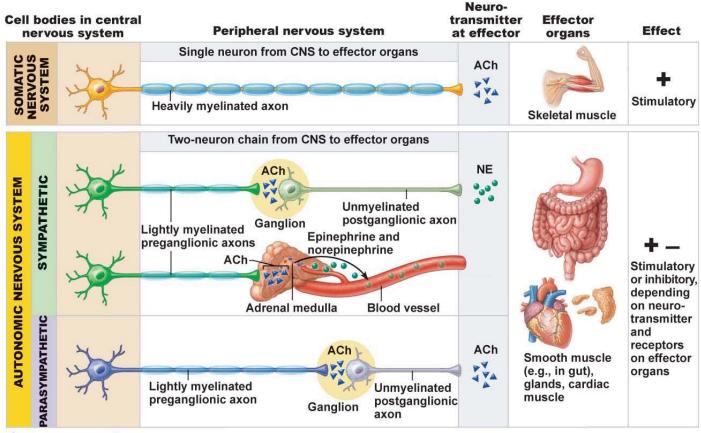
Catecholamines - site

dopamine epineph./nor-epi. .

a) excite/inhibit	both	both
b) presyn. storage	axon term.	axon term. & adrenals
c) postsyn. target	CNS	CNS, PNS (symp)
d) drugs	ampheta.	cocaine
e) drug effect	"feel good"	"feel good"

Catechol. - drugs, diseases

3) drugs:


- cocaine, amphatamines (uppers)
- block catechol. reuptake → cont. postsynaptic AP → cont. stim. → → crash (all systems fall apart)

4) diseases:

- a) Parkinsons:
- dopamine neuron degen. \rightarrow speech, movement prob.
- treatment: L-dopa to stim. dopamine prod.
 - **Q:** dosage too much \rightarrow schizophrenia
- b) schizophrenia:
- poss. overstim. of dopamine neurons

ANS - NT

ACh & Nor-epinephrine: decrease or increase HR

Acetylcholine (ACh) Shorepinephrine (NE)

Copyright © 2010 Pearson Education, Inc.

Amino Acids - drugs, diseases

- 3) drugs
- a) benzodiazeprine (valium)

- ↑→↓

- ↑ GABA effect →↓ spasms (epilepsy, drug OD, poisons)
 → tranquilizing effect (anxiety,
- "nerves")
- b) strychnine

- block glycine receptors \rightarrow cannot relax antag. breathing muscles \rightarrow asphyxiation (unrelaxed diaphragm)

4) disease

a) Huntington's Chorea:

 $\downarrow \textbf{GABA neurons} \rightarrow \textbf{uncontrolled movements}$