Skeletal Muscle Physio.

> in vivo - living organism
in vitro - isolated muscle
(a)

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Lab Setup

1) biological material:
a) pithed frog-exposed muscle or b) isolated skeletal muscle
2) oscilloscope : stimulating \& recording electrodes

Lab Results Summary

1) single stimulus:

- \uparrow stimulus intensity -> stronger muscle twitches

2) multiple stimuli:
\uparrow stimulus frequency -> graded muscle resp.
3) isometric contractions (muscle length changes)
a) shortened \& stretched muscles -> less force
b) natural length muscles -> most force
4) isotonic contractions (weight changes)
a) lighter weights - faster \& longer pickup
b) heavier weights - slower \& shorter pickup

Stimulus Strength Δ

\uparrow stimulus strength -> stronger muscle twitches

Stimulus Range:

below threshold

- no twitch
threshold to maximal
- stronger twitch, to limit

Twitch Duration \& Speed (1)

3 muscle fibers: fast glycolytic, fast oxidative, slow oxidative

(b) Comparison of the relative duration of twitch responses of three muscles

note: $\mathbf{y}=\%$ max. tension, not muscle force (g)

Twitch Duration \& Speed (2)

1) extra-ocular muscle: short and fast twitch

- move and rotate eyeball
- mostly fast glycolytic fibers (white)

2) gastrocnemius (calf): in-between twitch

- flex foot and knee
- mostly fast oxidative fibers (pink)

3) soleus (calf): long and slow twitch

- flex foot, posture in running
- mostly slow oxidative fibers (red)
* each muscle: diff. distrib. of 3 muscle fibers

Muscle Fiber Types (1)

feature	red	pink	white
1) metab.	slow oxidative	fast oxidative	fast glycolytic
2) capillary	extensive	medium	sparse
3) ATP	aerobic	aerobic	anaerobic
4) fatigue	slowly	medium	quickly
5) site	trunk, calf	legs	arms
6) activity	run, posture	walk	lift, spring

Stimulus Frequency Δ

\uparrow stimulus frequency -> graded muscle resp.
 - wave summation graphs: treppe, unfused and fused tetanus, fatigue

16b - multiple stim, 1-120\#\#sec, incr 10\#\#sec

Neural Circuit - Muscle Response

Recruitment (motor unit summation)

Time (ms)
Copyright © 2010 Pearson Education, Inc.

stimulus range: threshold -> maximal

recruitment:

\uparrow stim. intensity
-> $\uparrow \# m o t o r ~ u n i t s ~ s$
-> \uparrow tension
(max \# units =
max. force limit

Recruitment (motor unit size)

recruitment sequence:
 smallest (least force \& fatigue) -> largest (most)

- muscles have all 3 motor unit sizes
- energy conservation; reduce fatigue

Terms (1)

1) twitch

- one stimulus
- one sized contraction
- explosive build-up
- prod. \uparrow force by $\uparrow \#$ motor units
- due to \uparrow stimulus intensity

2) wave summation

- multiple stimulus
- many, diff. sized contractions
- slow build-up
- prod. \uparrow force from same motor units
- due to \uparrow stimulus freq. (rate)
= temporal summation (added in time)

Terms (2)

3) tetanus

- example of wave summation
- tetanus - incl. uninterrupted, sustained contractions
- incomplete or unfused tetanus - prior to tetanus
- needed in "work": muscle contraction force > load
- prod. from same \# motor units

4) motor unit summation

- recruit: prod. \uparrow force from \uparrow \# motor units
- stimulus range: (\uparrow stimulus intensity; muscle limits)
a) threshold = min. stim. intensity for response
b) $\boldsymbol{m a x}$. stimulus $=\mathbf{m a x}$. stim. intensity for response
- no stronger response as all motor units recruited

Muscle Force

muscle contractions
\rightarrow muscle force to hold or move weights

1) isometric contractions

- hold weights in position
- posture (body weight)
eg pitching position, push wall
- stationary load
eg hold dumb bell

2) isotonic contractions

- move weights a distance
- lift weight eg move baby up or down

Muscle Length

muscle contractions

\rightarrow muscle length change or not, which affects if a load is moved or not

1) isometric contractions

- load is not moved
- muscle length - does not change

2) isotonic contractions

- load is moved
- muscle length does change (concentric - shortens, eccentric - lengthens)

Isotonic \& Isometric Combined

a) $\mathbf{3}$ phases: isotonic \rightarrow isometric \rightarrow isotonic
b) isotonic: lift \& put down weight
c) isometric: hold weight

- longest time with the lightest weight
- moment only with heaviest weight

Isometric Contractions

(b) Isometric contraction

Muscle is attached to a weight that exceeds the muscle's peak tension-developing capabilities. When stimulated, the tension increases to the muscle's peak tension-developing capability, but the muscle does not shorten.

Copvighti02010 Pearson Education, Inc.

Muscle Length Δ

- isometric contractions*
a) shortened to natural muscle length: force increases
b) natural to stretched muscle length: force decreases * work is not performed

50-75 mm: force increase

80-100 mm: force decrease

Length - Tension (1)

relaxed (resting length) muscle: most force

Length - Tension (2)

a) cramped muscle (shortened length, 60-80\%)
\rightarrow prod 0-80\% force eg handcuffs, arthritis
b) relaxed muscle (natural length, $\mathbf{8 0 - 1 2 0 \%}$) $\rightarrow \operatorname{prod} 80-100 \%$ force eg stretch before workout
c) stretched muscle (pulled length, 120-180\%)
\rightarrow prod 100-0\% force eg strait jacket

Isotonic Contractions

(a) Concentric isotonic contraction

On stimulation, muscle develops enough tension (force) to lift the load (weight). Once the resistance is overcome, the muscle shortens, and the tension remains constant for the rest of the contraction.

(a) Concentric isotonic contraction

Copyright © 2010 Pearson Education, Inc.
> force matches the load length changes (shortens) load is moved; work occurs

Muscle Length Changes

Isotonic contraction: muscle length changes
a) concentric changes (towards center)

- muscles shorten during contraction
- eg lift baby up (biceps shorten)
b) eccentric changes (away from center)
- muscles lengthen during contraction
- eg put baby down (biceps lengthen)

Isometric contraction: no muscle length change

- muscle length remains the same length
- eg keep holding baby (biceps remain same length)

Isotonic - Work

work is performed: load is moved a distance

a) lightest weight pickup $-\uparrow$ distance $\&$ time
b) heaviest weight pickup $-\downarrow$ " \& "

Isotonic Only - $\mathbf{3}$ factprs

a) lightest weight pickup - fastest speed, \uparrow distance $\mathcal{\&}$ time b) heaviest weight pickup - slowest ", \downarrow " \& "

Isotonic vs Isometric

Feature

1) force gen.
2) changes in
3) activities
4) work occur
5) muscle dev.
length
yes
strength \& flex.
aerobics
yes
Isotonic

Isometric
yes
force
no
strength \& mass
body bldg/yoga

Muscle Contraction Factors

1) force/tension (contractile force)
a) \# muscle fibers stimulated
b) size of muscle fibers stimulated
c) frequency of stimulation
d) degree of muscle stretch

- length-tension relationship
- isometric contractions
$2 \& 3)$ velocity, duration
e) muscle fiber type
f) load - isotonic contractions
g) recruitment

Skel. Muscle Levels

5 levels:

1) muscle
2) fasiculus
3) fiber
4) myofibril (sarcomere)
5) myofilament

Sarcomere

myofibril

(c) Small part of one myofibril enlarged to show the myofilaments responsible for the banding pattern. Each sarcomere extends from one Z disc to the next.

Copyright 02010 Pearson Education, Inc.

(d) Enlargement of one sarcomere (sectioned lengthwise). Notice the myosin heads on the thick filaments.

Copyright © 2010 Pearson Education, Inc.

Parts of the Sarcomere

a) components:

1) 2 bands: light (I) \& dark (A) bands
2) 3 filaments: myosin, actin, titin
3) zone: H zone
4) line: Z line/disc, M line
b) striations:
5) dark: A band (myosin, \mathbf{H} zone, part of actin)
6) light: I band (part of actin, Z line)
c) hexagonal shape: 1 thick to 6 thin filaments
d) zig-zag fit of indiv. sarcomeres
e) contraction phases:

- relaxed, partially contracted, fully contracted

Sarcomere Contractions (2)

Sarcomere Contraction (3)

Phase	Dark (A) band	Light (I) band
$\underline{\text { myos. actin H zone }}$	actin Z line titin	.

1) relaxed same apart open phase
2) partly
contracted phase
same closer part
3) fully
contracted phase
same over- over
lap closed
less less tighter, visible space shorter
visible with relaxed, space long
closed
not little tight,
visible space short

Sarcomere Hexagon (1)

hexagon shape: 6 actin myo-filaments

- zigzag fit of indiv. sarcomeres

length wise view

Crosssection view

(e)

Sarcomere Hexagon (2)

hexagon shape: 6 actin myo-filaments

- zigzag fit of indiv. sarcomeres

length wise view

> crosssection view

shorter, thicker	
sarcomere	longer, thinner sarcomere

Nerve-Muscle Interface

Phase 1: neural excitation Phase 2: excitation-contraction (neural excitation -> muscle contraction)

Phase 1
Motor neuron
stimulates
muscle fiber
(see Figure 9.8).

Phase 2:
Excitation-contraction coupling occurs (see Figures 9.9 and 9.11).

Cross-Bridge Cycle (1)

Copyright © 2010 Pearson Education, Inc.

Cross-Bridge Cycle (2)

	Actin Position	Myosin Head	Sarcomere Size *
2) attach	stationary	to troponin	original
2)	a) slides to center b) slides from center	pulls actin to center pulls actin from center	shorten, thicker lengthen, thinner
3) detach	a) slides from center	pulls actin from center	lengthen, thinner
	b) slides to center	pulls actin to center	shorten, thicker
4) cock			
*note: concentric \& eccentric muscles			

