
Heredity

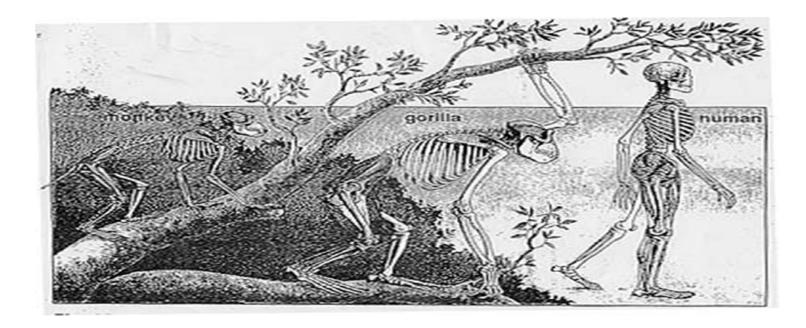
Sexual Reproduction

- unique organism (unique genotype & phenotype) sexual reproduction -> genetic variation between individuals genetic variation factors: 1) crossover - allele exchanges between homologous chrom. 2) independent assortment - genetic variation in gametes 3) random sperm fertilization - hundreds of millions of sperm per ejaculation, only 1-2 will fertilize the egg

Genetic Variation

Pioneers of Heredity

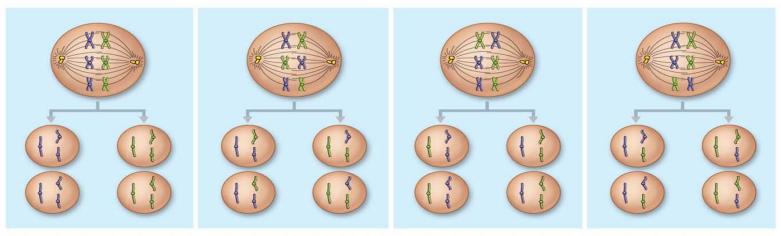
- 1) Darwin how are organisms changed?
 - genetic var. -> bio-diversity
 - natural selection & biodiversity
 - -> evolution
 - bird studies
- 2) <u>Mendel how are changes passed?</u>
 - deduced existence of genes
 - segregation, independent assortment
 - garden pea experiments
- 3) <u>Watson & Crick how are changes saved?</u>
 - DNA molecular structure


Darwin – how are organisms changed?

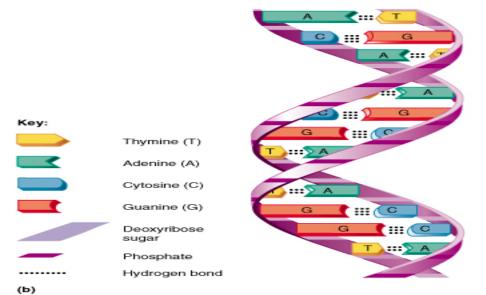
Theory of evolution (1859)

- descent with modif. in successive generations <u>Natural selection</u>

- environ. change ->survival of fittest


(from the bio-diversity prod. thru genetic variation)

Mendel - how are changes passed?


- 1) segregation chromosomes separated
- 2) independent assortment chromo. indep. distributed

16 possibilities

Watson & Crick - how are changes saved?

molecular structure of DNA gene = trait, specific section & locus of chromosome human genome project: about 25,000 genes (only)

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Dominant / Recessive Heredity

- dominant alleles:

eg brown eye color, tongue rolling, widow's peak, non-albino, unattached earlobes, etc.

<u>Trait</u>	Phenotype	Genotype .
1) brown eyes	Ε	EE (homozygous dom.)
2) brown eyes	Ε	Ee (heterozygous)
3) blue eyes	e	ee (homozygous rec.)

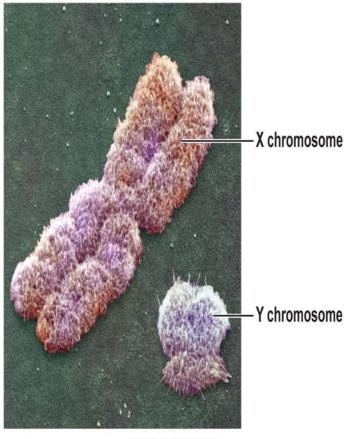
Incomplete or Co-Dominance Heredity

sickle cell anemia (sickling gene)
- amino acid substitution in HB -> sickle-shape RBC
benefit: malarial protection; ↑ levels in africans

Ss: sickle cell anemia trait

- make normal and sickled Hb
- 1) healthy unless in prolonged low oxygen air
- 2) can transmit sickling gene to offspring
- ss: sickle cell anemia disease
 - make only sickled Hb
 - OK until breathing problems or excess exercise
 - sickle RBC's jam & fragment in capillaries
 breathing problems & pain

Multiple-Allele Heredity

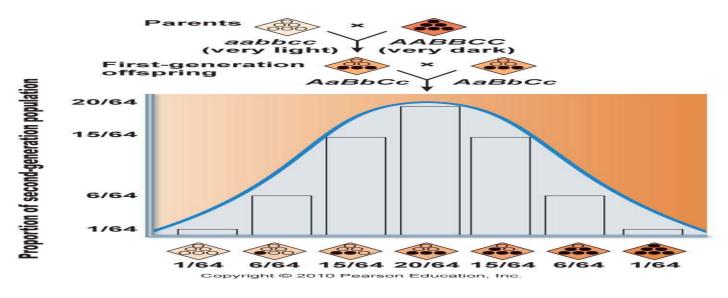

3 alleles: I^A, I^B, i
4 phenotypes (blood groups)
A & B are co-dominant

ABO Blood Groups			
FREQUE	U.S. POPULATION)		
GENOTYPE	WHITE	BLACK	ASIAN
ii	45	49	40
I ^A I ^A or I ^A i	40	27	28
I ^B I ^B or I ^B i	11	20	27
$I^{A}I^{B}$	4	4	5
	FREQUE GENOTYPE ii I ^A I ^A or I ^A i I ^B I ^B or I ^B i	FREQUENCY (% OFGENOTYPEWHITE ii 45 $I^A I^A$ or $I^A i$ 40 $I^B I^B$ or $I^B i$ 11	FREQUENCY (% OF U.S. POPULGENOTYPEWHITEBLACK ii 4549 I^AI^A or I^Ai 4027 I^BI^B or I^Bi 1120

Sex-Linked Heredity

<u>X-linked</u> (X chrom. - 2500 genes) gene on X chrom., "unmasked" in males eg hemophilia, red-green color blindness

<u>Y-linked (</u>Y chrom. - 15 genes) gene on Y chrom, only males, father to son eg SRY (male dev.), hairy ear pinnae



Polygene Heredity

skin color, height, metabolic rate, intelligence

- phenotype expressed by several gene pairs, at different sites, acting in tandem
- results in graded difference between 2 extremes

3 gene pairs: skin color spectrum from light to dark

Terms Assign. (not collected)

- 1) chromosome
- 2) homologous chromosome
- 3) allele
- 4) trait
- 5) dominant trait
- 6) recessive trait
- 7) co-dominant trait
- 8) gene
- 9) gene locus
- 10) homozygous genes
- 11) heterozygous genes
- 12) phenotype

13) genotype

Maternal Contributions

phenocopies = environmentally
produced phenotypes

- like genetic mutations
- thalidomide (sedative)

 flipperlike appendages

 low childhood hormones (TH)

 abnormal skeletal proportions (cretinism/ dwarfism)

 poor nutrition & infections

 stunts "tall genes", brain & body development

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

"RNA-only Genes"

"junk genes" = non protein coding DNA

- small RNA molecules that act directly on DNA, RNA, and/or protein synthesis

3 examples:

- 1) anti-sense RNA: prevent protein synthesis
- 2) micro-RNA: silence mRNA's
- 3) ribo-switches: start/stop protein synthesis

research area:

- gene therapy in Parkinson's, cancer, genetic disorders

Genomic imprinting

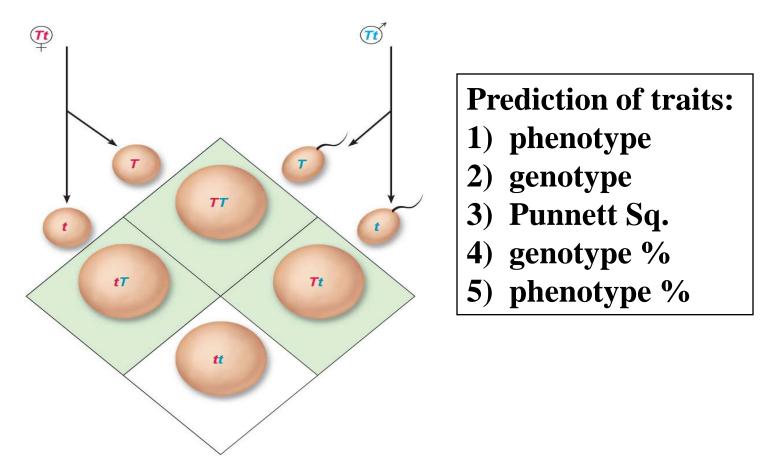
certain genes are tagged (imprinted) in gametogenesis

- tagged genes are expressed; untagged genes are silent
- same allele has different effect, depends on source parent

Chromosome Pair #15

Angelman Syndrome (mom)

- retarded, incoherent speech, jerky movement, uncontrolled laughter


Prader-Willi Syndrome (dad)

- less retardation, short, grossly obese

Maternal DNA

```
- both parents: nuclear DNA
  mother: yolk, cytoplasm, organelles, maternal DNA
maternal DNA:
1) mitochondrial DNA (mtDNA)
      - identical fragment in all human mitochondria
         (basis for "Eve", placental studies)
      - defects may involve muscle & neural disorders
2) centriole DNA
```

Punnet Square (1)

Copyright © 2010 Pearson Education, Inc.

Punnet Square (2)

Case: blue-eyed woman mates with brown-eyed man (homozygous dominant) Question: What are the chances of blue eyed child?

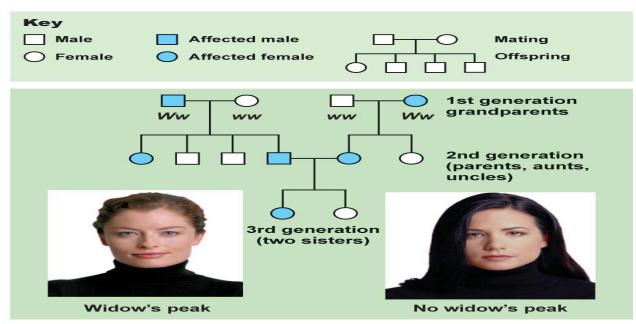
1) Phenotypes: E and e

2) Genotypes: EE and ee

3) Punnett Square:

	E	E
e	eE	eE
e	eE	eE

4) Genotype %: EE = 0%, eE = 100%, ee = 0%5) Phonotype %: E = 100% a = 0%


5) Phenotype %: E = 100%, e = 0%

Answer: 0% chance of a blue-eyed child.

Carrier Recognition

2 ways to identify carriers of specific genes:

- 1) blood tests for recessive genes
 - sickle cell anemia, Tay-Sachs, cystic fibrosis
- 2) pedigree
 - trace genetic trait through several generations

Copyright © 2010 Pearson Education, Inc.