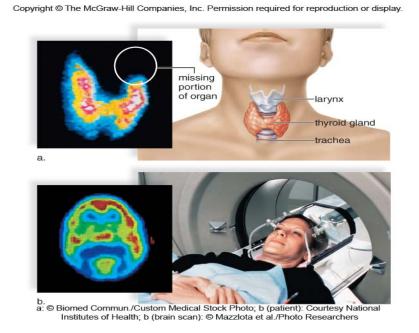

Chemistry Topics

- 1) elements
- 2) inorganic compounds
- 3) organic compounds

Elements

Element/atom = basic building blocks of matter

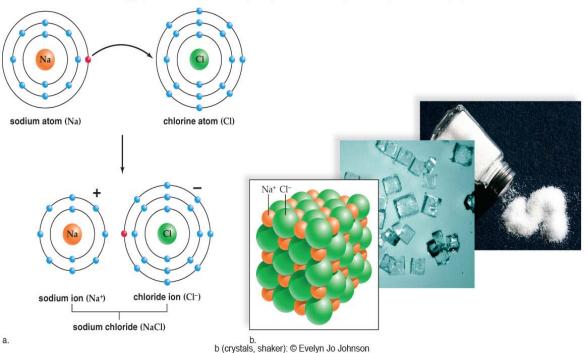
- 1) each element:
 - a) same number of subatomic particles (e⁻, p⁺, n)
 - b) atomic structure of nucleus and energy orbitals (shells)
- 2) periodic table: table of elements
 - each column has similar chemical reactions (periodicity)



Isotopes

normal atoms: same number of protons and neutrons

- stable, does not break down, stays the same isotopes: same number of protons, diff. number of neutrons
- unstable, breaks down, releases energy and subatomic particles


use: tracers to detect cell changes, eg tumours

Molecules

molecules: atoms bonded to other atoms 3 types of bonds: covalent, ionic, and hydrogen

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ionic bonds bond of charged atoms

table salt (NaCl) atoms gain or lose electrons

2nd strongest bond

Matter & Energy

matter

- molecules made of bonded atoms
- bonds: covalent, ionic, hydrogen bonds
- atoms: nucleus (protons & neutrons) + shell (electrons)

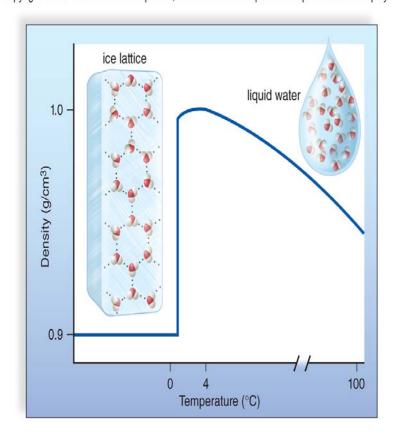
```
eg salt = NaCl; sodium + chlorine (Na, 11) (ionic bond) (Cl, 17)
```

energy

- power to change bonds, therefore matter
 eg metabolism = creating new matter from old matter
 catabolism: break bonds; release energy
 anabolism: form bonds, use energy
- types: potential (stored), kinetic (in motion)

Inorganic Compounds

non-carbon containing compounds


- 1) water:
 - 60-80% by weight of living organism
 - metabolic regulate life processes
 - hydrogen bonds in water (ice and liquid)
- 2) salts ion source
- 3) acids & bases pH level

Water Properties

- 1) high heat capacity
- water absorbs heat, reg. body temp.
- 2) high heat of evaporation
- water releases heat, reg. body temp.
- 3) solvent
- water has hydrogen bonds, which dissociates polar compounds, eg NaCl
- 4) cohesive & adhesive molecules
- water has hydrogen bonds, which "sticks" to other molecules
- 5) ice is lighter than liquid water
- water has hydrogen bonds, which expands & becomes lighter when frozen constricts & becomes heavier when heated

Ice & Liquid Water

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

<u>ice</u>

- H bonds forms lattice, becomes lighter, less dense

liquid water

- H bonds closer, becomes heavier, more dense

Q: ice float or sink?

Acid-base Imbalance

acidosis (pH < 7):

- 1) respiratory acidosis: hypoventilation (excess CO₂ in body)
- 2) metabolic acidosis:
 - a) excess alcohol
 - b) diarrhea
 - c) excess diet/starvation
 - d) excess exercise
 - e) kidney failure

alkalosis (pH> 7):

- 1) respiratory alkalosis: hyperventilation (insuff. CO₂ in body)
- 2) metabolic alkalosis:
 - a) vomit
 - b) excess antacids consumption
 - c) constipation

Organic Compounds

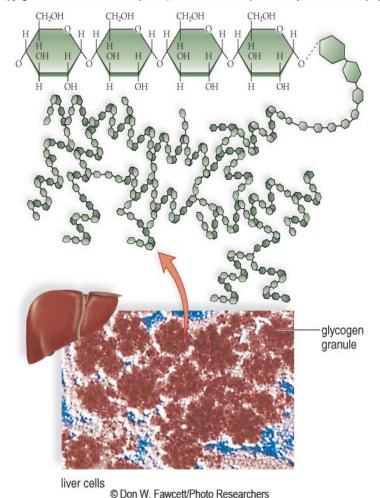
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Organic molecules	Examples	Monomers	Functions
Carbohydrates	Monosaccharides, disaccharides, polysaccharides	CH ₂ OH HOOH HOH Glucose	Immediate energy and stored energy; structural molecules
Lipids	Fats, oils, phospholipids, steroids	н о н н н н н H-C-OH C-C-C-C-С-R I-C-OH НО Н Н Н Н Н H-C-OH Fatty acid H	Long-term energy storage; membrane components
Proteins	Structural, enzymatic, carrier, hormonal, contractile	amino H acid group H ₂ N COOH	Support, metabolic, transport, regulation, motion
Nucleic acids	DNA, RNA	phosphate C C S Nucleotide	Storage of genetic information

definition: organic = carbon containing

types	<u>food</u> .	
1) carbohydrates	bread	
2) lipid	chocolate	
3) protein	meat	
4) nucleic acid	yolk	

Carbohydrates


basic unit: saccharides (sugar)

function: energy, structural material

- 1) sugar
 - energy, eg glucose (blood sugar)
- 2) starch
 - stored energy, eg glycogen (liver & muscles)

Glucose & Glycogen

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

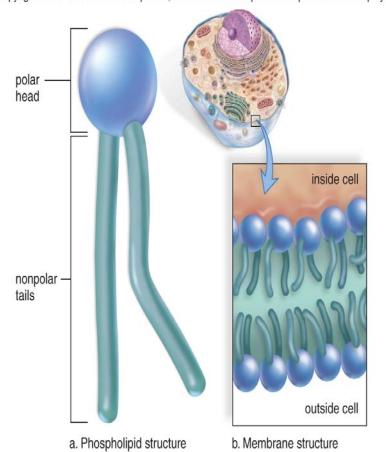
glucose

- cell energy

glycogen

- stored animal energy (muscles & liver only)
- *starch
- stored plant energy
- bread, rice, bananas

Lipids


basic unit: glycerol, fatty acid

function: stored energy, structural material

- 1) insoluble
 - protection & stored energy
 - eg phospholipids (cell membrane), fat
- 2) soluble
 - regulate metabolism:
 - eg steroids (cholesterol, estrogen, testosterone)

Phospholipids

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

component of animal cell membranes

function of phopho-lipid bilayer?

orientation of head & tail?

hydro-philic & hydro-phobic properties?

Protein

basic unit: amino acids (20+)

function: energy, structural material, defence (WBC), metabolism (enzymes), movement (muscles)

- 1) fibrous proteins
 - long fibers, tough, strength
 - eg collagen (bones), myosin (muscles)
- 2) globular proteins
 - round, portable, reg. metabolism
 - eg hemoglobin, enzyme

Nucleic Acids

basic unit: nucleotides

function: instructions for all cell processes

- 1) nucleotide
 - cell energy, eg ATP
- 2) nucleic acid
 - synthesize protein, eg RNA
 - store heredity information, eg DNA,