Membrane Composition (1)

1) membrane

function: barrier, boundary material: phospholipid (bilayer)

- a) aqueous surfaces (outer, inner)
 - =hydrophilic phosphate heads
- b) non-aqueous center
 - =hydrophobic lipid tails

2) receptors

function: sense external cell activities neg. charged - keeps RBC apart material: carbohydrates - glyco-calyx, -protein, -lipid

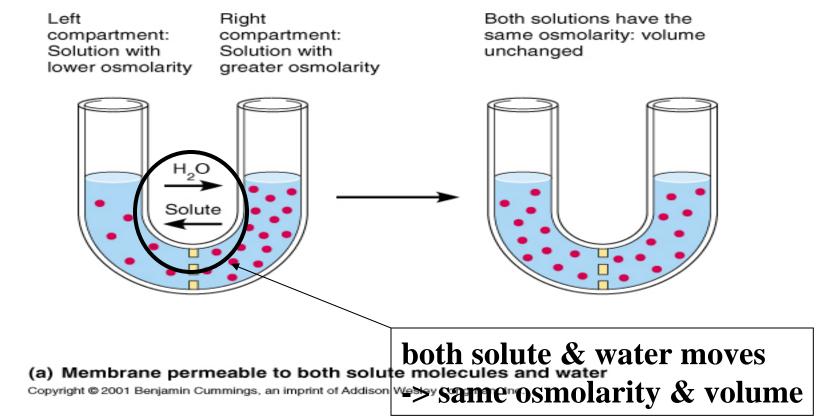
Membrane Composition (2)

3) fillers

function: fills up spaces between phospholipids (firms up cell membrane)

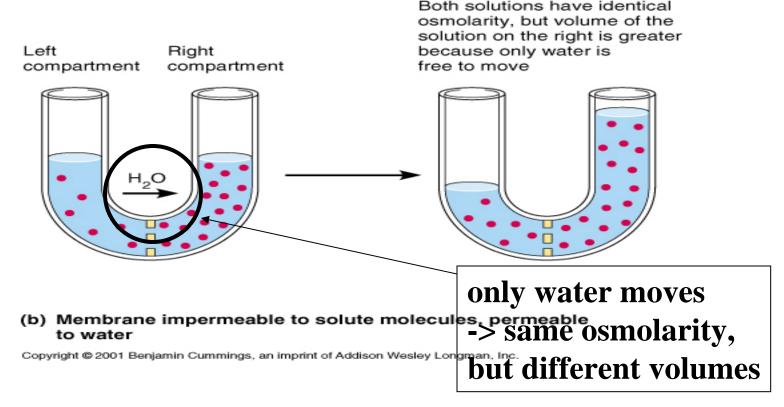
material: cholesterol

4) channels


function: structural support (firms up membrane) transport enzymes (reg. chem. reactions) receptors for hormones antigen markers for blood & tissues basis for "fluid mosaic model" name (proteins move around phospholipids) material: protein

Passive Transport Criteria

- 1) energy (ATP): not needed
- 2) membranes: none or permeable (with pores)
- 3) concentration gradient: present
- 4) movement direction: $[\uparrow] \rightarrow [\downarrow]$ (with gradient)
- 5) material movement:
 - a) solute & solvent:
 - diffusion (simple, facilitated)
 - dialysis
 - **b)** solvent:
 - osmosis (water)


Dialysis

- perm. memb. (water, small solutes); conc. grad. present
- solvent and small solute mvmt. thru dialysis membrane
- solute size range: water < salt < glucose < starch/sucrose</pre>

Osmosis

- membrane perm. to water only; conc. gradient present
- solvent movement thru filter
- filter pore size: only water passes, solutes do not pass

Osmosis - RBC

- membrane only permeable to water
- \uparrow water entry into container \rightarrow \uparrow osmotic pressure

eg RBC in salt solutions experiment - \uparrow tonicity (salt conc) $\rightarrow \downarrow$ water entry $\rightarrow \downarrow$ RBC size \triangle

salt%:	1.5+%	0.9%	water
tonicity:	hypertonic	isotonic	hypotonic
RBC size:	shrink (crenate)	same -	swell (hemolysis)

10/2/20 water mvmt.: leave Cell Physio - Snoa Asu

enter

Filtration

- membrane permeable to solutes by size
- gravity \rightarrow hydrostatic pressure
- pressure gradient (\uparrow pressure $\rightarrow \downarrow$ pressure)
- eg: charcoal powder filtration experiment size: charcoal > starch > CuSO₄ > water passage: CuSO₄, water due to gravity and membrane pore size
- eg: blood filtration in kidney tubules size: blood cells > urea > glucose > salts > water passage: salts, water due to blood pressure and renal capillary pore size

Active Transport

criteria:

- 1) energy (ATP): needed
- 2) membranes: present
 - permeable (with pores)
- 3) concentration gradient: present
- 4) movement direction: $[\uparrow] <- [\downarrow]$
 - movement against gradient
- 5) material:
 - large solutes

Bulk Transport

- results from cell membrane adaptations

Type:

- 1) exocytosis
 - vesicles fuse around foreign objects, eject outside
 - adds to cell membrane surface
- 2) endocytosis
 - vesicles fuse around foreign objects, pinch off inside
 - eg: 1) bulk phase endocytosis: liquids w/ protein, fat
 - 2) phagocytosis: WBC, lysosomes
 - 3) pinocytosis: urinary bladder cells
 - 4) receptor-mediated endocytosis: arterial cells

Somatic Cells

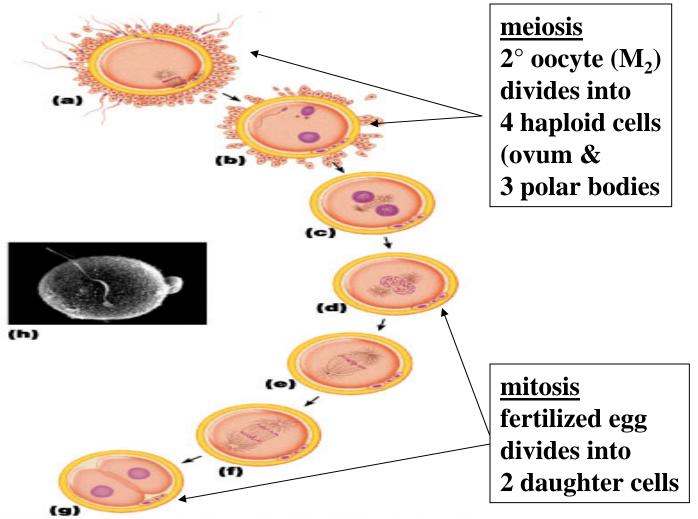
= cell div. of somatic cells (all cells except sex cells)

somatic cell cycle:

- 1) interphase $(46 \rightarrow 92)$
 - \rightarrow mitosis (2 x 46), 2 diploid (2n) cells
- 2) mitosis: 4 phases P, M, A,T

somatic cell makeup:

- 1) diploid (2n)
- 2) 46 chromosomes
 - 22 pairs autosomes, homologous
 - 2 sex chromosomes, not nec. homolog.


Interphase

growth / interphase: (75% - 95% cell cycle time)

3 phases:

- 1) G₁: 1st growth phase
 - cell contents increase & size doubles
 - cytoplasm, organelles except genes
 - neurons & skeletal muscle cells stay at G₁
- 2) S: synthesis
 - genes double (46 -> 92)
- **3)** G₂: complete growth process

Meiosis & Mitosis

Copyright @ 2004 Pearson Education, Inc., publishinin as Benjamin Cummings. .