- 1. Nervous Sys. I: Action Potential; Ion Channels; Membrane Potential
- 2. Nervoous Sys. II: Synaptic Potentials and Cellular Integration,; Synaptic Transmission
- 3. Endocrine Sys.: Biochemistry, Secretion and Transport of Hormones; Actions of Hormones
- 4. Muscular Sys.: Neuromuscular Junction; Muscle Metabolism
- 5. CV Sys.: Cardiac Cycle; Measuring Blood Pressure; Cardiac Output
- 6. Immune Sys.: Innate Host Defenses; Humoral Immunity; Cellular Immunity
- 7. Respiratory Sys.: Gas Exchange, Pulmonary Ventilation
- 8. Urinary Sys.: Glomerular Filtration; Early Filtrate Processing; Late Filtrate Processing
- 9. Fluid, Electrolyte, and Acid Base Balance: Body Fluids; Water Homeostasis; Elec. Homeostasis

The Nervous System: The Action Potential

- a. The action potential changes the membrane potential from _____ mV (resting) to _____ mV and back again to the resting membrane potential.
 b. This results from a change in membrane permeability first to _____ then to _____ due to the opening of what type of ion channels?
- 2. a. Where is the density of voltage-gated Na^+ channels the greatest?
 - b. What areas of the neuron generate signals that open these voltage-gated channels?
 - c. Opening of these channels causes the membrane to _____ (voltage change).
- a. If the membrane reaches the trigger point, known as ____, what electrical potential will be generated?
 b. During the depolarization phase, voltage-gated _____ channels open and ____enters the cell.
- 4. What are the two processes that stop the potential from rising above +30 mV?
- 5. a. The opening of voltage-gated K^+ channels cause the membrane to ______.
 - b. Does K⁺ move into or out of the cell?
 - c. If the membrane potential becomes more negative than -70 mV, this is called _____.
 - d. This potential is caused by what characteristic of K^+ permeability?
- a. After an action potential, the neuron cannot generate another action potential because ______ channels are inactive. This period is called the ______ period.
 b. During the ______ period, the cell can generate another action potential but only if the membrane is (more or less) depolarized.
- 7. a. Conduction velocity along the axon is increased by what two characteristics?
 - b. Conduction along a myelinated axon is called ______ conduction.
- 8. a. Name the disease whose symptoms include loss of vision and increasing muscle weakness.
 - b. What does this disease destroy?
 - c. How does this stop an action potential?

The Nervous System: Ion Channels

- 1. What structures in the cell membrane function as ion channels?
- 2. Ion channels are selective for specific ions. What three characteristics of the ions are important for this selectivity?
- 3. Channels can be classified as either gated or nongated channels. A sodium channel that is always open would be classified as a/an ______ channel.
- 4. Would sodium ions move into or out of the neuron through these channels?
- 5. Voltage-gated potassium channels open at what voltage? _____ mV
- 6. Acetylcholine (ACh) and GABA are neurotransmitters that open chemically-gated channels. What ions pass into the cell when these channels are activated?
- a. ACh: _______ions b. GABA: ______ions
 7. Ion channels are regionally located and functionally unique. List all the areas on the neuron and the type of potential dependent on the following types of ion channels:

Channels	Areas on the neuron	Type of potential
Nongated		
Chemically-gated		
Voltage-gated		

INTERACTIVE PHYSIOLOGY 10 SYSTEM

- From the quiz, place an "X" by the characteristics of voltage-gated sodium channels. 8.

 - _____ Always open
 - Always open
 Found along the axon

 Important for action potential
 Opened and closed by gates

 Found on the dendrites and cell bodies
 Important for resting membrane potential

9. Name two channels (gated or nongated) through which chloride ions could pass into the cell through

- a. The Japanese puffer fish contains a deadly toxin (tetrodotoxin). What channels does this toxin block? 10.
 - b. What potential would this toxin block?
 - c. What specifically would cause death?

The Nervous System: Membrane Potential

Record the intracellular and extracellular concentrations of the following ions (mM/L): 1.

	Intracellular	Extracellular
Sodium (Na ⁺)		
Potassium (K ⁺)		
Chloride (Cl ⁻)		

- Excitable cells, like neurons, are more permeable to ______ than to ______. 2.
- How would the following alterations affect the membrane permeability to K⁺? Use arrows to indicate 3. the change in permeability.

a. An increase in the number of passive K⁺ channels ______

- b. Opening of voltage-gated K⁺ channels _____
- c. Closing of voltage-gated K⁺ channels
- a. What acts as a chemical force that pushes K^+ out of the cell? 4.
 - b. What force tends to pull K^+ back into the cell?
- When the two forces listed above are equal and opposite in a cell permeable 5. only to K^+ , this is called the _____ potential for K^+ which is _____ mV. In an excitable cell, also permeable to Na⁺ and Cl⁻, the gradients mentioned in question 4 would both
- 6. tend to move Na⁺ _____ the cell.
- 7. Would the gradients in question 4 promote or oppose the movement of Cl⁻into the cell?
- Since the neuron is permeable to Na^+ as well as K^+ , the resting membrane potential is not equal to the 8. equilibrium potential for K^+ , instead it is _____ mV.
- What compensates for the movement (leakage) of Na⁺ and K⁺ ions? 9.
- What will happen to the resting membrane potential of an excitable cell if: (Write pos or neg to indicate 10. which way the membrane potential would change.)
 - \uparrow extracellular fluid concentration of K^+ a.
 - \downarrow extracellular fluid concentration of K⁺ b.
 - \uparrow extracellular fluid concentration of Na⁺_____ c.
 - \downarrow number of passive Na⁺ channels _____ d.
 - open voltage-gated K⁺ channels _____ e.
 - f. open voltage-gated Na⁺ channels _____

The Nervous System II: Synaptic Potentials and Cellular Integration

- Enhanced postsynaptic potentials are due to increased ______ entering the terminal as a result of _____. 1.
- Presynaptic inhibition is due to decreased ______ entering the terminal as a result of ____. 2.
- a. Synaptic potentials are also known as _____ potentials. 3.
 - b. They as they travel away from the synapse.
- a. Increasing the number of action potentials on an axon in a given period of time would 4. cause _____ summation.
 - b. Increasing the number of synapses from different neurons would cause summation.
- The magnitude of the EPSPs may be reduced (thus affecting their ability to 5. generate and their action potential) by adding _____ potentials, or _____s.
- Inhibitory synapses would have the maximum effect if located where? 6.

INTERACTIVE PHYSIOLOGY 10 SYSTEM

- From the quiz, how many impulses did it take to cause an action potential:
 a. From the axon the furthest away from the cell body? ______
 b. From the axon located on the cell body?
- 8. Pulses from how many neurons were required to stimulate the postsynaptic neuron?
- 9. Compare action potentials and synaptic potentials:

	Action Potential	Synaptic Potential
Function		
Depolarization/ hyperpolarizations		
Magnitude		

The Nervous System II: Synaptic Transmission

- 1. What channels in the presynaptic neuron open up in response to an action potential?
- 2. The presence of what ion inside the cell causes the synaptic vesicles to fuse with the membrane?
- 3. a. What is the name for the chemicals stored in the synaptic vesicles?
 - b. What do these chemicals diffuse across?
 - c. Where do these chemicals bind to receptors?
- 4. What type of gated channels do these chemicals open?
- 5. Name two ways these chemicals can be removed from the synaptic cleft.
- 6. The response on the postsynaptic cell depends on two factors:
- 7. Name the two types of cholinergic receptors and indicate where these are found.

Туре	Found
	excitatory: inhibitory:

- 8.
- Indicate where the following three adrenergic receptors are found:

α1		
β1		
β2		

- 9. Autonomic nerves innervate what three things?
- 10. The most common excitatory neurotransmitter in the CNS is
- 11. Two major inhibitory neurotransmitters in the CNS are:
- 12. Name a drug that alters synaptic transmission in the following ways:
 - a. blocks the action of the neurotransmitter at the postsynaptic membrane _____.
 - b. blocks the reuptake of the neurotransmitter at the presynaptic membrane _____.
 - c. blocks the release of the neurotransmitter _____ and _____.

Endocrine System: Biochemistry, Secretion and Transport of Hormones

1. Place the following hormones into one of the three categories of hormones (peptides, amines or steroids): T_4 (thyroxin), estradiol, norepinephrine, insulin, aldosterone, glucagon, cortisol, growth hormone, T_3 (triiodothyronine), epinephrine, testosterone and vasopressin (ADH).

INTERACTIVE PHYSIOLOGY 10 SYSTEM

ipilea ey. Ballara 115a, 2011			
]	Peptides	Amines	Steroids

- 2. Peptide hormones are synthesized as large precursor hormones called ______. The hormones (or prohormones) are stored in ______ and released from the cell by ______. Do peptide hormones require a carrier in the blood stream?
- 3. Catecholemines are produced in the ______ of the adrenal gland and are classified as ______ hormones since they are derived from ______. Stimulation of the chromaffin cells causes an influx of ______ ions, which causes the vesicles to merge with the plasma membrane and release the hormone by ______. Are catecholemines water-soluble or lipid-soluble?
- 4. Thyroid hormones include two molecules called _____and ____. T_3 consists of two _____ molecules plus _____i iodine molecules and is (more or less) abundant than T_4 . Are carriers required for the transport of thyroid hormones?
- 5. All steroid hormones are derived from ______, which steroid hormone is produced is determined by the ______ present in the cell. The common precursor molecule for all steroid hormones is ______. Steroid hormones enter the blood stream by ______ and _____ (do or do not) require a carrier. The rate of secretion of steroid hormones is (faster or slower) than catecholemines
 - not) require a carrier. The rate of secretion of steroid hormones is (faster or slower) than catecholemines because steroid hormones are not ______.
- 6. Preganglionic sympathetic fibers trigger the release of ______ and _____ (hormones) from the ______ (gland), this is an example of neural regulation of hormone secretion.
- 7. Two examples of hormonal regulation of hormone secretion include: 1) the negative feedback of $T_3 \& T_4$ to decrease _____ levels; and 2) the negative feedback of cortisol which decreases both _____ and ____ levels.
- 8. Besides increased levels of plasma glucose and amino acids (humoral regulation), increased levels of both ______ (hormone) and the ______ nervous system increase plasma insulin levels.
- 9. Some hormones are released in rhythmic 24 hour patterns know as ______ rhythms. ______ is a hormone where stressful stimuli can override this pattern and increase the plasma hormone levels. In contrast, ______ hormones (amine hormones) are an example where large amounts of the hormones are bound to carrier proteins in the plasma forming a large circulating reservoir. Thus, acute changes do not produce large changes in the plasma level of this hormone.
- 10. The _____ and _____ are the major organs that metabolize hormones. The type of hormone determines how fast they are metabolized. ______ and _____ are rapidly metabolized, while ______ and _____ take longer to metabolize.

Endocrine System: The Actions of Hormones on Target Cells

- The receptor is activated by the input signal that is the ______. This signal causes a biochemical change in the cell. Name three of the five possible changes listed
 Water soluble proteins such as _____ and _____ bind to receptors located where on the cell?
- 3. G proteins:
 - -What is bound to the G protein in the inactive state? _____ In the active state? _____
 - -What catalyzes the conversion of ATP to cAMP?
 - -What is known as the first messenger? _____Second messenger? _____
 - -A molecule of cAMP activates _____, which can phosphorylate many proteins.
 - -A single molecule of a hormone can have a large effect on the cell due to this process called ______. -What is the enzyme that inactivates cAMP? ______
- 4. Insulin: -Insulin decreases plasma glucose, amino acids and fatty acids by stimulating the conversion of them to their storage form.
 - Name these storage forms.glucose \rightarrow _____mino acids \rightarrow _____fatty acids \rightarrow _____
 - Conversion to the storage form is known as _____ metabolism.
 - After a meal, high levels of glucose, amino acids and fatty acids lead to a/an (decrease or increase) in insulin secretion.

Compiled by: Sandra Hsu, 2011 INTERACTIVE PHYSIOLOGY 10 SYSTEM -The autonomic nervous system also regulates insulin secretion. What effects would the sympathetic and parasympathetic system have on insulin secretion?

-Insulin travels in the blood and binds to what type of receptors on the cell membrane?

-What is the approximate half-life of insulin?

-What hormone increases plasma glucose levels? _____ This hormone breaks down the storage forms and this is known as _____ metabolism.

- 5. Diabetes: -Type (1 or 2) diabetes is characterized by a resistance of the target cells to insulin. Plasma insulin levels are normal or high. -In type 1 diabetes, the lack of insulin and glycogenolysis in the liver leads to (hypoglycemia or hyperglycemia).- With the increase in filtration of glucose at the kidneys the carriers become _____ and glucose appears in the urine, also known as ______.-Glucose acts as an ____ _____ leading to increased urine flow.-Increased lipolysis produces an increase in ______ which when used as fuel produces _____.- The presence of these in plasma and urine is known respectively as _____ and _
- -Lipid soluble hormones such as _____ and _____ hormone bind to receptors located _____. 6.
 - -Once the hormone binds to the receptor, the ______ dissociates from the receptor complex.
 - -The hormone receptor complexes act as ______.
 - -The receptor-hormone complex then binds to .

-The mRNA produces _______ that catalyze biochemical reactions in the cell. Cortisol is classified as a ______ hormone. Name 4 major actions of Cortisol.

- 7.
- These actions are important for the stress response.
- The main function of thyroid hormones is: _____. 8. Three other specific functions include:

The Muscular System: Neuromuscular Junction

- What insulates each muscle cell? 1.
- Synaptic vesicles in the axon terminal of a motor neuron contain what neurotransmitter? 2.
- 3. An action potential in the axon terminal of a motor neuron opens what type of ion channels?
- By what means of membrane transport does the neurotransmitter leave the axon terminal? 4.
- 5. Binding of neurotransmitter to the receptors on the motor endplate open what type of ion channels?
- Opening of these channels leads to ______ of the motor endplate. 6.
- How is the neurotransmitter removed from the synaptic cleft? 7.
- As a result of question 6, an action potential is propagated along the _____ of the muscle cell and 8. down the _____ into the cell.
- The result of this action potential releases what ion from the terminal cisternae? 9.
- a. What effect did molecule "X" in the quiz have on the muscle contraction? 10.
 - b. Explain its mechanism of action.
 - c. What drug did molecule "X" act like?
- a. What effect did molecule "Y" have on the muscle contraction? 11.
 - b. Explain its mechanism of action.
 - c. What drug did molecule "Y" act like?
- 12. a. What effect did molecule "Z" have on the muscle contraction?
 - b. Explain its mechanism of action.
 - c. What drug did molecule "Z" act like?

The Muscular System: Muscle Metabolism

- List the three roles of ATP in muscle contraction: 1.
- Potential energy in ATP is released when the high-energy bond is broken by a process called . 2. Write the end products of this process: ATP $(+H_2O) \rightarrow$
- Rebuilding ADP into ATP with a new source of energy is carried out by a process called ______. 3. Write the equation for this process: $___ \rightarrow ATP (+ H_2O)$ List the three processes used to synthesize additional ATP when ATP supplies are low:
- 4.
- 5. An immediate source of energy is _____ (CP), but the supplies are limited and rapidly depleted. One molecule of CP produces ____ ATP.
- Glucose is a major source of energy for synthesizing ATP. List the two sources of glucose: 6.
- _____ is the process that breaks down glucose. 7.

Compiled by: Sandra Hsu, 2011 **INTERACTIVE PHYSIOLOGY 10 SYSTEM** Name two products of the breakdown of glucose: If oxygen is not available, pyruvic acid is converted to _____ acid, which is the end product of ______ respiration. If oxygen is available, the process is known as respiration. 8.

- Name two sources of oxygen: The aerobic pathway consists of glycolysis + _____ + ____. The net result of one glucose molecule is ____ ATP.
- The process of restoring the depleted energy reserves after exercise is called ______. 9. Name four processes that occur during this time:
- 10. Put the following characteristics under the correct fiber type:
 - Krebs cycle and oxidative phosphorylation - uses glycolysis - fatigue rapidly - high endurance - few capillaries - many capillaries - much myoglobin - little myoglobin - long-distance runner - sprinter - light in color—large diameter - red in color—small diameter Red Slow-Twitch Fibers White Fast-Twitch Fibers

The Cardiovascular System: Cardiac Cycle

- Valves open in response to _____ 1.
- List the chambers/vessels that the four valves connect: 2.

Chamber		Chamber/Vessel
	Pulmonary Semilunar	
	Aortic Semilunar	
	Mitral	
	Tricuspid	

- a. Ventricular filling occurs during ______ ventricular _____ 3. b. Blood flows through the _____ or _____ valves into the ventricles.
- 4. During Ventricular Systole, what closes the AV valves?
- During Ventricular Systole, what opens the semilunar valves? 5.
- During Isovolumetric Relaxation, what closes the semilunar valves? 6.
- 7. During Isovolumetric Relaxation, what opens the AV valves?
- Why is hypertension hard on the heart? 8.
- Looking at the ventricular volume graph, the stroke volume is approximately how many ml? 9.
- During the four phases listed below, state whether the AV and semilunar valves are opened or closed: 10.

	AV valves	Semilunar valves
Ventricular Filling		
Isovolumetric Contraction		

_____ on their two sides.

Com	piled by: Sandra Hsu, 2011	INTE	ERACTIVE PH	IYSIOLOGY 10 SYSTEM
Vent	ricular Ejection			
Isovo	lumetric Relaxation			
The	Cardiovascular System: Measu	ring Blood Pressure		
1.	-	_		Blood pressure results when that
	flow encounters	from the vessel v	valls.	*
2.	Blood pressure is expressed in	n of merc	cury and is writte	
3.			ssels with the lay	yers in the middle of the lumen flowing
	fastest. This is known as			
4.	Blood pressure fluctuates with		· ·	•
	crea			
5.				known as pressure (SP) and
_	is the result of ventricular	N	ormal SP is abou	ıt mmHg.
6.	What does the <u>dicrotic notch</u>			
7.	pressure (DP) is the l	-	artery and 1s a re	sult of ventricular
0	Normal DP is about m	0		
8.				re and pressure.
9.	Write the equation for pulse p			the arteries. It is closer to the diastolic
9.	pressure because the heart spe			the arteries. It is closer to the diastonic
	Write the equation for mean a		D _	
10.				in the blood vessel
10.	When taking blood pressure, inflate the cuff so that blood flow is in the blood vessel. Open the valve slowly, releasing the pressure. The first sound you hear through the stethoscope is recorded			
	as the pressure. The sounds you hear are due to the of the blood.			
	When you don't hear any sounds, this is recorded as the pressure.			
	For questions 11 and 12, calculate PP and MAP, given $SP = 130 \text{ mmHg}$ and $DP = 70 \text{ mmHg}$			
	(see Quiz section for an exam			6
11.	PP =			
12.	MAP =			
The	Cardiovascular System: Cardia	ac Output		
1.	Define Cardiac Output (CO).			
2.	Write the equation for CO.			
3.	Define Stroke Volume (SV).			
4.	Write the equation for SV.			
5.	Write the normal values (incl	ude correct units) for t	he following:	
	a. HR (heart rate) =	b.	SV (stroke volu	me) =
	c. EDV (end diastolic volume			lic volume) =
6.	Given the values for HR and	SV, calculate cardiac	output: Co	= C
7.	Explain how the following fa	ctors affect HR. SV. a	nd CO by placin	g arrows (\uparrow , \downarrow , or \leftrightarrow for no change)
	under them.	, , , , , ,		
		HR	SV	СО
	a. ↑ SNS			
	b. ↑Venous return			
	c. Exercise			
	d. ↑ Calcium			
	TID			

e. \downarrow HR

8.

- 9.
- Why would stroke volume increase with an increase in the sympathetic nervous system or in calcium? Why would stroke volume increase when heart rate slows down? If stroke volume is 75 ml/beat and heart rate is 80 beats/min, how many of the soda bottles would equal the correct volume (from the quiz)? 10.

The Immune System: Innate Host Defenses Name the two major categories of innate (nonspecific) defenses: 1. Surface barriers include the and of the respiratory, gastrointestinal and 2. genitourinary tracts. List the three properties of skin that help it resist invasion: 3. The mucus membranes not only provide a barrier, but they also produce a variety of protective chemicals. 4. For example, the stomach secretes _______ enzymes and has a very _____ pH. The respiratory and digestive tracts are lined with ______ that traps pathogens. 5. Once the surface barrier has been broken, the second line of defense, the innate internal defense system (nonspecific defense system), attempts to limit the spread of pathogens. Name the 5 components of the innate internal defense system: Neutrophils and monocytes/macrophages (monocytes develop into macrophages in the tissue) are the two 6. types of phagocytes discussed. Answer the following questions by circling the correct answer. w nich phagocyte is most abundant?Neutrophil or MonocyteWhich phagocytizes more pathogens?Neutrophil or MacrophageWhich cell is not found in healthy tissue?Neutrophil or Macrophage A phagocyte recognizes and binds to molecules found on pathogens using special membrane receptors, 7. such as the _____ receptor and the _____ (___) receptor. At least 10 different TLRs have been identified on human phagocytes. Two reactions are triggered when 8. TLRs recognize a pathogen: A phagocyte engulfs a pathogen and brings it inside the phagocyte in a vesicle called a ______, 9. which later fuses with a lysosome and is then called a ______. 10. Name three ways the pathogen is destroyed: Many pathogens have evolved strategies to avoid being killed by phagocytes. For example, some bacteria 11. enclose themselves in capsules. ______ is a process of coating bacteria to enhance phagocytosis by a macrophage. Phagocytes have receptors that can attach to opsonins on the bacteria. Two factors can act as opsonins: Certain _____ (from the adaptive defense system) can enhance the killing process within a macrophage. 12. This happens when the macrophage presents antigens from the bacteria to this cell. This is an example of the interaction between the innate and adaptive defense systems. cells are a type of lymphocyte, but, unlike the B and T cells, they are not specific. 13. However, they can still recognize abnormal cells. T cells look for the presence of abnormal antigens on the cell surface, while these cells look for the _____ of normally occurring self-proteins. 14. NK cells kill like _____ T cells; direct contact with a target cell causes it to undergo _____, a form of cellular suicide. Name the two types of antimicrobial proteins: 15. 16. Interferons are cytokines that do the following three things: 17. What causes a cell to secrete interferons? The interferons secreted by this cell bind to receptors on nearby cells, causing these nearby cells to produce 18. proteins that _____ by degrading _____ and preventing synthesis of _____. 19. The complement system is a cascade of interdependent proteins which enhance both the innate and adaptive defenses. When activated, these proteins can: Both adaptive and innate defense systems can activate this cascade via several pathways. For example: 20. • ______ on cells activate the cascade via the classical pathway. • _____ bind to sugars on the surface of bacteria (______ pathway). • A lack of proteins on body cells active the alternative pathway. 21. All three pathways cause activation of the C3 protein, which splits into two fragments, C3b and C3a. What do these fragments do? C3a causes • C3b causes _____. • C3b cleaves C5 into two parts: 22. C5a causes • C5b combines with other complement proteins to form the ____(___), which causes the cell to lyse. Name the four cardinal signs of inflammation: 23. The purpose of inflammation is to bring ______ and _____ into an injured area. This action 24. accomplishes three things: • Prevents _____ • Disposes of _____

- Sets the stage for _____
- 25. When tissues are injured, macrophages release chemical mediators, called inflammatory mediators. These chemical mediators cause two key effects:
 - _____, which causes redness and heat; _____, which causes swelling and, thus, pain.
- 26. These chemical mediators activate cell adhesion molecules on endothelial cells. _______ is the process where neutrophils and monocytes bind to these cell adhesion molecules. When neutrophils bind to these molecules, they are activated and leave the blood vessel by a process called _____. Once in the tissue, the neutrophils follow a chemical trail to the site of infection. This process is called _____.
- 27. The leakiness of the capillaries allows plasma and proteins to leak into the injured area. What three important classes of proteins enter the affected area?
- 28. In addition to the complement system, other chemicals act as inflammatory mediators:_____
- 29. Bacterial components and cytokines act as _____, which cause the body's thermostat to set its temperature higher, thus causing a _____. This elevated body temperature helps our defense system because: _____.

The Immune System: Humoral Immunity

Antibodies can be found on the plasma membrane of ______ (where they act as antigen 1. receptors) or free in the extracellular fluid, here they are known as ______. 2. Antibodies consist of two types of polypeptide chains: • Two _____ chains—located on the inside of the Y-shaped molecule • Two ______ chains—located on the outside of the Y-shaped molecule The chains are held together by _____ bonds. Each chain has a ______ region which is unique for each antigen and a ______ region which is the same for each antibody in a given class of antibodies. Each arm of the Y-shaped antibody has identical ______ sites. The shape of these sites must match the shape of the ______ on the antigen in order to bind. The <u>stem</u> of the Y-shaped antibody determines how it will interact with other components of the immune 3. 4. 5. system. Complete the following examples given in this topic: • Whether the antibody remains ______ to the B cell Whether it activates the ______ system
 Whether it acts as an ______ to promote phagocytosis • Whether it can be joined with other antibodies to form a _____ (pair) or _____ (5 antibodies) • Determines the _____ pattern—how it travels through the body Name the five classes of antibodies, each with a distinct type of stem: 6. 7. Complete the list of four contributions of IgG antibodies: Constitutes the ______ of circulating antibodies
 Formed in the late ______ and throughout the ______ immune response • Provides ______ to the fetus • Can be transferred from one individual to another (example of ______ immunity) 8. Match the characteristics listed below to the correct antibody. Choose either IgM or IgA. • These antibodies are found in secretions of tears, sweat, and saliva • First antibodies secreted in response to a new antigen • Retained as monomers on the surface of B cells • Found in the mucosa of the gastrointestinal tract • Found in breast milk • Secreted as pentomers IgE is produced as a result of the body's infestation with . Which white blood cell is important 9. to combat this infestation? _____. List the two key factors in the production of IgE. In modern, industrialized countries, the most common function of IgE is its role in _____ 10. responses. When exposed to an ______ such as pollen, the body makes IgE antibodies. 11. 12. to _____) and has difficulty breathing (due to ______). are drugs that bind and block histamine receptors, thus alleviating the allergy symptoms. 13. Allergic reactions to peanuts can be very serious, causing a systemic allergic reaction known as _____. 14.

INTERACTIVE PHYSIOLOGY 10 SYSTEM

- IgD antibodies are located on the surface of ____ cells and act as an antigen receptor. They participate in 15. activating the _____ cell.
- There are four general ways that antibodies work (to remember: PLAN). Fill in the following: 16.
 - P—act as opsonins to destroy pathogens by ____
 - L—initiate complement activation resulting in _____ of the pathogen
 - A—cause _____, the clumping of molecules, which enhances phagocytosis
 - N-cause _____, which prevents toxins and viruses from interacting with body cells
- List the 3 key points for B cell activation: 17.
 - B cells respond to antigens.
 - These antigens are concentrated in the _____
 - These antigens are concentrated in the _____.
 B and T cells continually ____ and congregate in the _____. (where the antigens are concentrated).

- When naïve B cells encounter their specific antigen (usually in the _____ of the lymph node), the antigen is 18. brought into the B cell by _____. The peptide fragments of the antigen are displayed on the surface of the cell bound to _____ proteins.
- B cells then migrate deeper into the cortex where T cells are found. In most cases, full activation of B cells 19. requires the assistance of cells. These are known as "T cell- antigens."
- 20. If the T cell recognizes the antigenic fragment bound to the _____ protein on the B cell, the T cell binds to the B cell and are released from the T cell. The exchange of signals between the B and T cells is called
- 21. _____ cells are not needed for certain antigens such as polysaccharides. These antigens are known as "T cell-____ antigens." These are generally (stronger or weaker) responses.
- When the antigen has selected an appropriate B cell, the B cell will produce effector cells. Some B cells 22. will move deeper into the _____ and begin to secrete ___ antibodies, while others move to germinal centers.
- 23. Name the three events (summarized below) that happen in the germinal centers to the offspring of the original, activated B cell:
 - _____; results in antibodies that are highly selective for the antigen
 - _____; results in the cells producing IgG, IgA or IgE antibodies
 - ; results in cells becoming plasma cells or memory cells
- Humoral immunity can be acquired either actively or passively. Define each and give an example of the 24. naturally and artificially acquired forms.

Active Immunity:

- _____ • Naturally acquired:
- Artificially acquired:
- Passive Immunity:
 - Naturally acquired:
 - Artificially acquired:

The Immune System: Cellular Immunity

- Cytokines are small proteins that transfer information within the immune system. List the actions of 1. cytokines given in this Topic:
- Interleukin-1, a cytokine, acts as a chemical alarm to alert the immune system to the presence of a 2. pathogen. List the three actions given for interleukin-1 in this Topic:
- Interleukin-2, released by helper T cells, causes proliferation of activated lymphocytes. This process is 3. called:
- The two major classes of lymphocytes that mediate cellular immunity are based on the presence of surface 4. proteins called proteins. The most common are those with the markers.
- 5. Below are the two major classes of cells with CD protein markers. List what the cells become and what class of MHC proteins they bind.
 - CD4 cells: most become _____ cells but some become _____ cells - bind to _____ MHC proteins all become _____ cells
 bind to _____ MHC proteins CD8 cells:
- The HIV virus binds to CD4 surface proteins and destroys the _____ cells. 6.
- The proteins are one major class of self-antigens. Thus, before an organ transplant, the donor's and the 7. recipient's _____ proteins are matched as closely as possible to decrease the chance of organ ______.

INTERACTIVE PHYSIOLOGY 10 SYSTEM

- 8. _____ cells circulate through the body searching for infected or cancerous cells by examining the antigenic determinant on _____ MHC proteins on the cell surface. Fragments of ______, degraded proteins are loaded unto these proteins in the endoplasmic reticulum. If the antigenic peptide is a _____ antigen, the body cell will be destroyed.
- 9. Unlike class I MHC proteins, which can be displayed on any nucleated cell, class II MHC proteins are only displayed on select cells. Name the antigen-presenting cells that have class II MHC proteins: These cells communicate with CD4 cells, which will become _____ cells. Antigens presented on class II cells are _____antigens.
- 10. Class II MHC's are produced in the ____ and pick up the exogenous antigens when they fuse with the ____.
- 11. Name two results of presenting the exogenous antigen on class II MHC proteins:
 - CD4 cells are converted to helper T cells when _____ cells and _____ present the antigen.
 - ____cells and _____ present antigens to helper T cells to request further activation.
- 12. Dendritic cells are responsible for activating most T cells. Choose an answer for each of the following:
 - They can capture antigens found ______ (extracellularly, intracellularly, or both).
 - They can activate _____ (CD4, CD8, or both CD4 and CD8) cells.
 - They can express _____ (MHC I, MHC II, or both MHC I and MHC II) proteins.
- 13. Exception: Normally, when cells express endogenous foreign antigens on class I MCH proteins on their cell membrane, they are marked for destruction. This is not true for _____ cells. On these cells the presentation acts as an activation signal for _____ cells.
- 14. List the two steps necessary for T cell activation:
- 15. Once T cells are activated they undergo proliferation (called: _______) and differentiation. ______) and differentiation.
- 16. Antigen-presenting cells will express co-stimulatory molecules when they have been signaled by the ______defense mechanisms that an infection is present. However, if there is no infection, the antigens on the MHC protein are likely to be _____. Thus, without co-stimulation, the T cells become inactivated, a process called ______.
- 17. There are two ways to induce a process of self-destruction in a cell, which is called _____: *Cytotoxic T* cells look for the presence of MHCs with foreign antigens and release _____ and ____ or they bind to an ______ receptor (Fas receptor) on the surface of the cell.
 Natural killer cells look for the absence of _____ and are thus able to eliminate abnormal cells that
- cytotoxic T cells cannot detect.
 18. Helper T cells are critical for the activation of _____ cells and _____ T cells.
- 19. The helper T cell can help activate the CD8 cell to become a ______ T cell in two ways:
 - It stimulates the dendritic cells to express additional ______ molecules
 - It secretes _____ (including interleukin-2) to help activation
- 20. T_H1 cells secrete ______ interferons, which increase the effectiveness of ______ and _____ T cells. T_H2 cells secrete interleukins ______ and _____, which promote activation of <u>B</u> cells.
- 21.
 Regulatory T cells suppress the activity of other T cells by direct ______ contact or by releasing ______.

 .
 They are important in helping to prevent ______ diseases.

The Respiratory System: Gas Exchange

- 1. The atmosphere is a mixture of gases. Write down the percentages for:
 - a. O_2 _____b. CO_2 _____c. N_2 _____d. H_2O _
- 2. Calculate the partial pressures of the following gases at both atmospheric pressures:
 - 760 mmHg 747 mmHg
 - a. O₂ ______ ____
 - c. N₂
 - d. H₂O
- 3. What is the atmospheric pressure on the top of Mt. Whitney?
- 4. Calculate the partial pressure of O₂ on the top of Mt. Whitney. _____mmHg
- a. Why does more CO₂ than O₂ dissolve in liquid when both gases are at the same pressure?
 b. Name the law that explains this. _____
- 6. Efficient external respiration depends on three main factors list them.

2.

INTERACTIVE PHYSIOLOGY 10 SYSTEM

- What three factors cause the partial pressures of gases in the alveoli to differ from pressures in the 7. atmosphere?
- When airflow is restricted so that the partial pressure of O_2 is low and CO_2 is high, what happens to the: 8. a. arterioles? _____ b. bronchioles? ____ _____
- Internal respiration depends on three factors list them. 9.
- The planet Pneumo has a total atmospheric pressure of 900 mmHg. Oxygen and carbon dioxide each 10. constitute 30% of the atmosphere.
 - a. What is the partial pressure of oxygen on the planet Pneumo?
 - b. Which gas would be found in the highest concentration in your blood?

The Respiratory System: Pulmonary Ventilation

- a. The relationship between pressure and volume is known as Law. 1. b. Indicate the relationship with arrows below

 - 1. \uparrow volume \rightarrow _____ pressure 2. \downarrow volume \rightarrow _____ pressure Mark "I" for the muscles that control inspiration and "E" for those which control forceful expiration.
 - b. ____ Internal intercostals a. ____ Diaphragm
 - ____ External oblique and rectus abdominus d. _____ External intercostals c.
- Intrapulmonary pressure _____s (\uparrow or \downarrow) during inspiration. 3.
- a. What pressure is always negative and helps to keep the lungs inflated? 4. b. It is most negative during _____
- a. If transpulmonary pressure equals zero, what will happen to the lungs? 5. b. This is known as a _____
- a. When the bronchiole constricts, what will happen to resistance? (use arrows) 6. b. To airflow? (use arrows)
- Name two other important factors that play roles in ventilation: 7.

For 8 through 10 fill in *constrict* or *dilate*, then \uparrow and \downarrow arrows:

- Histamine will _____ bronchioles \rightarrow ____ resistance \rightarrow ____ airflow 8.
- Epinephrine will _____ bronchioles \rightarrow ____ resistance \rightarrow ____ airflow 9.
- Acetylcholine will _____ bronchioles \rightarrow _____ resistance \rightarrow _____ airflow 10.
- Fibrosis will (\uparrow or \downarrow) _____ compliance making it ______ to inflate the lungs. 11.
- A decrease in surfactant will result in a $(\uparrow \text{ or } \downarrow)$ in compliance. 12.

The Urinary System: Glomerular Filtration

- What force drives filtration at the glomerulus?_____ 1.
- Glomerular filtration is a process of ______ of the blood. 2.
- Common components of the filtrate are divided into four categories on the CD program. These 3. include:
- Blood pressure in the glomerulus is about mmHg. 4.
- What two pressures oppose filtration and what are their values? 5.
- What is the normal net filtration pressure? _____ mmHg 6.
- With a glomerular filtration rate of 125 ml/min, how much plasma would be filtered per day? 7.
- In an exercising individual the afferent arteriole will dilate or constrict (circle one) to avoid excess 8. fluid loss.
- 9. Two mechanisms that provide autoregulatory control over renal processes include:
- High osmolarity (or high Na⁺ and Cl⁻) in the ascending loop of Henle will cause afferent arterioles to 10. dilate or constrict (circle one) by releasing
- In periods of extreme stress, the sympathetic nervous system will override autoregulation. An 11. increase in sympathetic flow to the kidney will result in what two important effects that will aid maintenance of blood pressure?

The Urinary System: Early Filtrate Processing

- What are the two reabsorption pathways through the tubular cell barrier? 1.
- How can we cause water to diffuse from the lumen into the interstitial space? 2.
- Transport of what ion could cause the diffusion in question 2? 3.
- 4. Summarize reabsorption in the proximal tubule.
- 5. What percent of the filtrate is reabsorbed in the proximal tubule? %

INTERACTIVE PHYSIOLOGY 10 SYSTEM

d. _____ water reabsorption in descending limb

f. urine output

- The simple squamous cells of the thin descending loop are permeable to _____ but impermeable to _____. 6.
- The ascending limb of the loop of Henle is permeable to _____ but impermeable to _____. 7.
- What is the role of the loop of Henle? 8.
- What is the role of the Vasa Recta? 9.
- From the quiz section, what does furosemide do? 10.
- If you increase furosemide, what would happen to the following? (\uparrow or \downarrow) 11. b. ____ Na⁺- K^+ -2Cl⁻ retained in tubule
 - a. ____ Na⁺- K^+ -2Cl⁻ cotransport
 - c. _____ interstitial osmolarity
 - e. _____ filtrate and volume flow
 - g. ____ loss of body water and electrolytes

The Urinary System: Late Filtrate Processing

- Name the two types of cells in the cortical collecting ducts and describe their function. 1.
- 2. a. Aldosterone is stimulated by an increase or decrease in what ions?1. 2.
- b. What does aldosterone increase in the basolateral membrane?
- 3. What does antidiuretic hormone (ADH) increase in the luminal membrane?
- 4. In dehydration and overhydration, what would be the levels of:
 - a. ADH? _____ dehydration _____ overhydration (\uparrow or \downarrow)
 - b. Aldosterone? _____ dehydration _____ overhydration (\uparrow or \downarrow)
- Describe what moves out of the tubule and what the osmolartity would be in the following nephron 5. segments:
 - _____ moves out a. Proximal tubule _____ mOsm
 - b. Descending limb _____ moves out _____ mOsm c. Ascending limb _____ moves out _____ mOsm d. Late distal tubule _____ moves out _____ mOsm
- a. By the medullary collecting duct, only _____% of the filtrate remains. 6.
 - b. Under the following conditions, report the levels of ADH and subsequent urine osmolarity and flow rate:

Hydration	ADH	Urine Osmolarity	Urine Volume
Normal			
Dehydration			
Overhydration			

- a. Urine with a "high normal osmolarity" and containing RBC's and protein indicates: _____ 7.
 - b. Urine with a very high osmolartiy and glucose would indicate: ____

c. Urine with a very low osmolarity and high volume would indicate:

An increase in plasma potassium levels would lead to what changes in the following? (\uparrow or \downarrow) 8.

- Aldosterone levels b. _____ Potassium excretion a. _____
- c. _____ Sodium excretion d. _____ Interstitial osmolarity
 - Urine volume e.____

Fluid, Electrolyte, and Acid-Base Balance: Introduction to Body Fluids

- a. Where are fluids absorbed? 1.
 - b. Where are excess fluids and electrolytes lost?
- Name four of the six functions of water. 2.
- a. The amount of water in the body depends on the amount of ______ 3.
 - b. From the CD, list the person with the highest and lowest percentage of water and give the percentage. 1. Highest ______%

b. _____

%

- 2. Lowest
- ____% List the three fluid compartments and the percentage of total body water in each. 4.
 - a. _____% c. ______%

13

Comp	iled by: Sandra Hsu, 2011 INTERACTIVE PHYSIOLOGY 10 SYSTEM				
5.	Give an example of each of the following solutes:				
	a. Ions/electrolytesb. Colloidsc. Nonelectrolytes				
6.	List the major extracellular and intracellular cations and anions				
	a. Extracellular cations: anions:				
	b. Intracellular cations: anions:				
7.	Within a fluid compartment, the total number of				
	must be equal to the total number of				
8.	Name four of the seven functions given for electrolytes:				
9.	Osmosis: When more solute particles are added to one side of a container with a selectively permeable				
	membrane, which way will the water move?				
10.	What happens to a patient's red blood cells when the following solutions are given:				
	a. Hypotonic solution				
	b. Hypertonic solution				

c. Isotonic solution

Fluid, Electrolyte, and Acid-Base Balance: Water Homeostasis

1. Below are listed the four examples of disturbances in water homeostasis. Indicate if there is an increase (\uparrow) , decrease (\downarrow) , or no change (\leftrightarrow) in volume and osmolarity. Give an example of each.

Disturbance	Volume	Osmolarity	Example
Hypervolemia			
Hypovolemia			
Overhydration			
Dehydration			

- What are the four primary mechanisms to regulate fluid homeostasis? 2. 3.
 - Answer the following questions on antidiuretic hormone (ADH):
 - a. What is the major stimulus?
 - b. What is the direct effect of the hormone?
 - c. What effect will this have on plasma volume and osmolarity?
 - d. What effect will this have on urine volume and osmolarity?
- List three ways dehydration leads to increased thirst: 4.
- Answer the following questions on the Renin-Angiotensin-Aldosterone System. 5.
 - a. What enzyme is released from the kidney in response to decreased blood pressure?
 - b. What enzyme converts angiotensin I to angiotensin II?
 - c. What are two effects of angiotensin II?
 - d. How does aldosterone cause more sodium to be reabsorbed in the kidney?
 - e. As a result, what happens to blood volume and blood pressure?
- a. A decrease in blood volume and pressure will lead to a/an _____ in the sympathetic nervous system (SNS). 6.
 - b. This will result in a decrease (\downarrow) , and increase (\uparrow) , or no change (\leftrightarrow) in the following:
 - 1. Afferent arteriolar constriction
 - 2. Blood flow to the glomerulus
 - 3. Urine loss 4. Renin release
- 7. a. Diabetes insipidus is due to
 - b. What will happen to the following: 1. Urine output 2. Plasma sodium 3. Plasma osmolarity 4. Thirst

Fluid, Electrolyte, and Acid-Base Balance: Electrolyte Homeostasis

- 1. Electrolytes enter the body in the food we eat and the beverages we drink. What is the main way they leave the body?
- Movement of electrolytes and water between intracellular and interstitial fluid: 2.

Compiled by: Sandra Hsu, 2011 INTERACTIVE PHYSIOLOGY 10 SYSTEM	
com	Electrolytes move across the cell membrane with (along) their concentration gradient through
	and against their concentration gradients through
	Electrolyte concentrations affect the movement of water between the intracellular and interstitial fluid.
	Increasing the sodium concentration in the interstitial fluid will cause water to move (into or out of) the
	cell. This process is called
3.	Factors that affect the movement of water between the plasma and the interstitial fluid:
	Plasma proteins are too big to move out of the vessel wall; therefore, they would cause water to move (into
	or out of) the plasma. This is due to the osmotic effect of the proteins, called pressure.
	The blood pressure in the vessels force fluid (into or out of) the blood vessels. This force is called
	pressure.
4.	The exchange of fluids between the interstitial fluid and plasma is known as
	At the arterial end of the capillary, pressure is greater than the pressure and
	fluid moves (out of or into) the plasma.
	At the venous end of the capillary, pressure is greater than the pressure and
	fluid moves (out of or into) the plasma.
5.	Altering the sodium concentration:
	An increase in the plasma sodium concentration would cause a/an (decrease or increase) in interstitial
	sodium concentration, andwould follow.
	An increase in sodium in the interstitial fluid would cause the cells to (swell or shrink).
6.	Edema is caused by in the interstitial compartment.
	The four causes of edema are:
	1 (for example, liver failure)
	2 (for example, hypertension)
	3 (for example, sprained ankle)
_	4 (for example, surgical removal of lymph nodes)
7.	What ion in the plasma has the most significant effect on the extracellular fluid?
	What is the normal concentration of this ion in the plasma? $__$ – $__$ mEq/L
	A decrease in plasma levels of this ion is called
8.	An increase in plasma levels is called What hormone acts in the kidney to reabsorb sodium?
0.	What is the major stimulus for the release of this hormone?
9.	What hormone is necessary for water to be reabsorbed in the kidney?
9. 10.	An increase in aldosterone will (increase or decrease) plasma levels of potassium.
10.	Some diuretics will cause an (increase or decrease) in plasma levels of potassium.
	The normal plasma concentration of potassium is $\underline{\ } - \underline{\ } mEq/L$.
11.	Hyperkalemia could be due to (acidosis or alkalosis), kidney failure, or increased potassium intake.
	Hypokalemia could be due to (acidosis of alkalosis), hearey fundate, of intereased potassium intake, or
12.	Normal plasma calcium levels are mg/dl. Muscle spasms and tetanus can result from
	(hypercalcemia or hypocalcemia).
13.	Hormone control of plasma calcium levels: lowers plasma calcium levels by inhibiting
	osteoclasts and stimulating osteoblasts increases plasma calcium levels by increasing
	osteoclasts in the bone, working through vitamin D and working on calcium reabsorption in the kidney.
14.	Mrs. Jones has congestive heart failure, hypertension, and a decreased glomerular filtration rate.
	Check the correct answers: (Quiz section)
	Edema: no edema or severe edema
	Effect on kidneys: \downarrow urine volume or \uparrow urine volume
	Cause of the edema: $__ \downarrow$ colloid osmotic pressure or $__ \uparrow$ hydrostatic pressure
15.	Currently in the ER, Leonard also has congestive heart failure and is on diuretics. His symptoms include
	muscle weakness and heart palpitations. What is his diagnosis? (Quiz section)
	-