\qquad
You may use a calculator to compute solutions but show your set-ups.

(1) Find the center of mass (relative to the base) of a hemisphere of radius r and uniform density ρ.

$$
\text { Ans: } \bar{x}=0, \bar{y}=\frac{3}{8} r
$$

(2) Find the center of mass of the solid of revolution formed by rotating the region bounded by $y=\sqrt{x}$ and $y=x^{3}$ about the y-axis. Assume uniform density.

$$
\text { Ans: } \bar{x}=0, \bar{y}=\frac{25}{48}
$$

(3) Find the center of mass (both coordinates) of a right-triangular plate of uniform thickness and density whose height is 20 cm and width is 14 cm .

$$
\text { Ans: } \bar{x}=\frac{14}{3}, \bar{y}=\frac{20}{3}
$$

(4) A bucket that weighs 4lb. and a rope of negligible weight are used to draw water from a well that is 80 feet deep. The bucket starts with 40lb. of water and is pulled up at a rate of $2 \mathrm{ft} / \mathrm{sec}$. Unfortunately, there is a hole in the bucket and water leaks out at a rate of $0.2 \mathrm{lb} / \mathrm{sec}$. Find the work done in pulling the bucket to the top of the well.

Ans: $3200 \mathrm{ft} \cdot \mathrm{lb}$.
(5) Determine the work done by gravity in emptying a hemispherical tank of water. Assume the radius of the tank is 8 m and the weight density of water is 10,000 Newtons $/ \mathrm{m}^{3}$.

$$
\text { Ans: } \frac{5632000}{3} \pi \approx 58978166 \text { Newtons. }
$$

(6) Newton's Law of Gravitation states that two bodies with masses m_{1} and m_{2} attract each other with a force

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

where r is the distance between the bodies and G is the gravitational constant ($G \approx 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$). If one of the bodies is fixed, find the work needed to move the other from a distance $r=a$ to a distance $r=b$.

$$
\text { Ans: } G m_{1} m_{2}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

(7) Use Newton's Law of Gravitation to compute the work required to launch a 1000 kg satellite vertically into an orbit 1000 km high. You may assume that Earth's mass is $5.98 \times 10^{24} \mathrm{~kg}$ and is concentrated at its center. Take the radius of Earth to be 6400 km .

