Show all relevant work!

1. Use calculus to find the area of an ellipse with the formula $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Solution: $x=a \sqrt{1-\frac{y^{2}}{b^{2}}}=\frac{a}{b} \sqrt{b^{2}-y^{2}}$ so the width of the rectangular strip is $2 \frac{a}{b} \sqrt{b^{2}-y^{2}}$.
The area of one strip of height Δy is therefore $2 \frac{a}{b} \sqrt{b^{2}-y^{2}} \Delta y$.

$$
\text { Area }=\int_{-b}^{b} 2 \frac{a}{b} \sqrt{b^{2}-y^{2}} \mathrm{~d} y=4 \frac{a}{b} \int_{0}^{b} \sqrt{b^{2}-y^{2}} \mathrm{~d} y
$$

2. Find the volume of the solid generated by revolving the area bounded by $y=\frac{1}{3} x^{2}$ between $y=0, y=5$, and the y-axis about the y-axis.

Solution: $x=\sqrt{3 y}$ so $V=\int_{0}^{5} \pi(\sqrt{3 y})^{2} \mathrm{~d} y=\left.\frac{3 \pi}{2} y^{2}\right|_{0} ^{5}=\frac{75}{2} \pi$

3. Find the volume of the solid generated by revolving the area bounded by $y=\sqrt{x}$ between $x=0, x=4$, and the x-axis about the y-axis.

Solution: The outer radius is $x=4$ while the inner radius is $x=y^{2}$. Then the area of a washer slice is given by $\Delta A=\pi 4^{2}-\pi\left(y^{2}\right)^{2}$. When $x=4, y=2$ so $V=\int_{0}^{2} \pi\left(16-y^{4}\right) \mathrm{d} y=\left.\pi\left(16 y-\frac{1}{5} y^{5}\right)\right|_{0} ^{2}=\frac{128}{5} \pi$

4. Repeat $\# 3$ for the volume of the solid generated by revolving the area bounded by $y=\sqrt{x}$ between $x=0, x=4$, and the x-axis about the axis $x=4$.

Solution: In this case the radius of each disc is $r=4-y^{2}$.
Then $\Delta A=\pi\left(4-y^{2}\right)^{2}$ so $V=\int_{0}^{2} \pi\left(4-y^{2}\right)^{2} \mathrm{~d} y=\pi \int_{0}^{2} 16-8 y^{2}+y^{4} \mathrm{~d} y$

$=\left.\pi\left(16 y-\frac{8}{3} y^{3}+\frac{1}{5} y^{5}\right)\right|_{0} ^{2}=\frac{256}{15} \pi$
5. Find the volume of the solid shown to the right.

Solution: Since $x=\frac{1}{y}$ it follows that the area of each disc is $\Delta A=\pi\left(\frac{1}{y}\right)^{2}$. From the bottom of the curve at $y=\frac{1}{4}$ up to the top at $y=1$ we have a volume of $\int_{1 / 4}^{1} \pi \frac{1}{y^{2}} \mathrm{~d} y$. We also need to consider the volume of the cylinder beneath the cuved shape. Its height is $\frac{1}{4}$ and its radius is $r=4$ so it has a volume of $\pi 4^{2} \cdot \frac{1}{4}=4 \pi$. The total volume, then is

$$
V=\int_{1 / 4}^{1} \pi \frac{1}{y^{2}} \mathrm{~d} y+4 \pi=4 \pi-\left.\frac{\pi}{y}\right|_{1 / 4} ^{1}=7 \pi
$$

6. Derive the formula for the volume of a frustum where the base radii are r_{1} and r_{2} and the height is h.

Solution: From the first triangle we have

$$
\begin{aligned}
\frac{r_{2}}{a} & =\frac{r_{1}}{a-h} \\
r_{2}(a-h) & =a \cdot r_{1} \\
a & =\frac{h r_{2}}{r_{2}-r_{1}}
\end{aligned}
$$

From the second triangle, we have

$$
\begin{aligned}
\frac{r_{2}}{a} & =\frac{x}{a-y} \\
x & =\frac{r_{2}(a-y)}{a}
\end{aligned}
$$

Combining the two results we have: $x=\frac{h r_{2}-y\left(r_{2}-r_{1}\right)}{h}$
The volume of the frustum comes from
$V=\frac{\pi}{h^{2}} \int_{0}^{h}\left[h r_{2}-y\left(r_{2}-r_{1}\right)\right]^{2} \mathrm{~d} y$
So $V=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)$
7. The region R bounded by $f(x)=e^{-x^{2}}$ and $g(x)=1-\cos x$ is shown. Write the integral for the volume of the solid generated by revolving R about the x-axis.

Solution: Let b be the solution to $e^{-x^{2}}=1-\cos x: b \approx 0.9419$.
Then $V=\pi \int_{0}^{b}\left(e^{-x^{2}}\right)^{2}-(1-\cos x)^{2} \mathrm{~d} x$

8. An icecream cone has radius 2.5 cm at the top. If a scoop of icecream in the form of a sphere with radius 4 cm is placed on top of the cone, what percentage of the icecream is outside the cone?

Solution: The integral looks much like the one for determining the volume of a sphere. (See the first sphere.) The only issue is the bounds of integration and these can be seen in the second figure.
$V=\pi \int_{-\sqrt{9.75}}^{4} 16-h^{2} \mathrm{~d} h=\left.\pi\left(16 h-\frac{1}{3} h^{3}\right)\right|_{-\sqrt{9.75}} ^{4} \approx 259.11$
The percentage is given by dividing by the volume of the sphere $\left(4 / 3 \pi(4)^{3}\right)$. We get about 97%.

