
Math 252

Solids of Revolution Name:

Show all relevant work!

1. Use calculus to find the area of an ellipse with the formula x2
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b2 = 1.
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Solution: x = a
√

1− y2
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√
b2 − y2 so the width of the rectangular strip

is 2a
b

√
b2 − y2.

The area of one strip of height ∆y is therefore 2a
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√
b2 − y2 ∆y.
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2. Find the volume of the solid generated by revolving the area bounded by
y = 1

3x
2 between y = 0, y = 5, and the y–axis about the y–axis.

Solution: x =
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3y so V =
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3. Find the volume of the solid generated by revolving the area bounded by
y =
√
x between x = 0, x = 4, and the x–axis about the y–axis.

Solution: The outer radius is x = 4 while the inner radius is x = y2.
Then the area of a washer slice is given by ∆A = π42 − π(y2)2.

When x = 4, y = 2 so V =
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4. Repeat #3 for the volume of the solid generated by revolving the area
bounded by y =

√
x between x = 0, x = 4, and the x–axis about the

axis x = 4.

Solution: In this case the radius of each disc is r = 4− y2.

Then ∆A = π(4− y2)2 so V =

∫ 2

0

π(4− y2)2dy = π
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16− 8y2 + y4 dy
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5. Find the volume of the solid shown to the right.

Solution: Since x = 1
y it follows that the area of each disc is

∆A = π( 1
y )2. From the bottom of the curve at y = 1

4 up to the top at

y = 1 we have a volume of
∫ 1

1/4
π 1

y2 dy. We also need to consider the

volume of the cylinder beneath the cuved shape. Its height is 1
4 and its

radius is r = 4 so it has a volume of π42 · 14 = 4π.
The total volume, then is

V =
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π
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6. Derive the formula for the volume of a frustum where the base radii are
r1 and r2 and the height is h.

Solution: From the first triangle we have

r2
a

=
r1

a− h
r2(a− h) = a · r1

a =
hr2

r2 − r1

From the second triangle, we have

r2
a

=
x

a− y

x =
r2(a− y)

a

Combining the two results we have: x =
hr2 − y(r2 − r1)

h

The volume of the frustum comes from

V =
π

h2
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7. The region R bounded by f(x) = e−x
2

and g(x) = 1− cosx
is shown. Write the integral for the volume of the solid
generated by revolving R about the x–axis.

Solution: Let b be the solution to e−x
2

= 1− cosx: b ≈ 0.9419.

Then V = π

∫ b
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(e−x
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)2 − (1− cosx)2 dx
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8. An icecream cone has radius 2.5 cm at the top. If a scoop of
icecream in the form of a sphere with radius 4cm is placed on
top of the cone, what percentage of the icecream is outside
the cone?

Solution: The integral looks much like the one for determining the vol-
ume of a sphere. (See the first sphere.) The only issue is the bounds of
integration and these can be seen in the second figure.

V = π

∫ 4

−
√
9.75

16− h2 dh = π

(
16h− 1

3
h3
)∣∣∣∣4
−
√
9.75

≈ 259.11

The percentage is given by dividing by the volume of the sphere
(4/3π(4)3). We get about 97%.
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