Chp. 8 Closing Problems

Show all relevant work!

Some useful(?) formulas:
$C=2 \pi r$
$A=\pi r^{2}$
$S A=4 \pi r^{2}$
$V=\frac{4}{3} \pi r^{3}$
$\cosh ^{2} x-\sinh ^{2} x=1$

Arclength: $\ell=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} \mathrm{~d} x \quad$ and $\ell=\int_{\alpha}^{\beta} \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta \quad$ Area $=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} \mathrm{~d} \theta \quad \bar{x}=\frac{\int x \mathrm{~d} m}{\int \mathrm{~d} m}$
Don't Panic

1. A block of maple is turned on a lathe to produce the solid sculpture shown on the right. Maple has a weight density of 0.2 pounds per cubic inch.
The table below shows diameter measurements of the piece at height increments of 2 inches.

Height (in):	0	2	4	6	8	10
Diameter (in):	3.9	3.0	4.5	4.9	3.3	3.6

(a) Use horizontal slices and a Right Hand sum with increments of 2 inches to approximate the weight of the sculpture.
(b) Use the Right Hand sum with increments of 2 inches to help you determine the vertical center of mass of the sculpture (we will assume the horizontal center of mass (weight) lies along the axis of rotation).
2. A solid is formed by revolving the region bounded by $y=4-0.2 x^{2}$ and the x - and y-axes about the y-axis. Find the center of mass of the solid assuming its density varies with the square of its distance above the plane of the x-axis and the the center lies along the axis of rotation.
3. Consider the region, R, bounded by $y=2 \sin x$, and $y=x^{2}$.

Suppose we rotate the region R about the x-axis.
Assuming uniform mass density, $\delta \mathrm{kg} / \mathrm{m}^{3}$, and all lengths in meters, determine the center of mass (along the axis of rotation) for this solid. Show any relevant integrals.
4. A conical tank of radius 5 feet and height 12 feet is filled with water. Find the work done by gravity in emptying the tank through the bottom. Assume the weight density of the water is $62.4 \mathrm{lbs} / \mathrm{ft}^{3}$.

5. Repeat number (4) if the tank is turned upside down (but still drained by gravity down through the bottom).

6 . Consider the region bounded by $y=x^{3}-3 x^{2}+5$, the x-axis, the y-axis, and the line $x=3$. Suppose we rotate this region about the x-axis. Assuming uniform mass density, $\delta \mathrm{kg} / \mathrm{m}^{3}$, and all lengths in meters, determine the center of mass (along the axis of rotation) for this solid.
7. Find the arc length of the cardioid $r=3-2 \cos \theta$.

8. A bead is made by drilling a cylindrical hole of radius 1 mm through a sphere of radius 5 mm . See below.

Set up (and evaluate) an integral representing the volume of the bead.

9. The population of a city varies inversely with the distance from the city center according to the density function, $\delta r=\frac{20}{r+1}$ where δ is measured in thousands of people per square kilometer. Assuming the city is contained within a 3 km radius, find the population of the city.

