(1) The conversion formula relating ${ }^{\circ} C$ and ${ }^{\circ} F$ is given by $F=\frac{9}{5} C+32$. This is often derived from two of the more common reference temperatures: the freezing point of water: $\left(0^{\circ} C, 32^{\circ} \mathrm{F}\right)$ and the boiling point of water: $\left(100^{\circ} C, 212^{\circ} F\right)$. Show this derivation.
(2) Suggest a rule of thumb for converting ${ }^{\circ} C$ to ${ }^{\circ} F$: \qquad
For what temperatures in ${ }^{\circ} C$ is your approximation . .
(a) an underestimate
(b) an overestimate
(c) exactly right
(d) Within $1 F^{\circ}$ of correct
(3) Write a piecewise function for the graph shown to the right.

Figure 1: Piecewise Function
(4) DRY OXTAIL IN REAR is an anagram for what word?
(5) Solve $x^{4}-13 x^{2}+36=0$
(6) Solve $t^{-1 / 3}-5 t^{2 / 3}=0$
(7) Solve $\frac{x}{\sqrt{1+x^{2}}}-\frac{4-x}{\sqrt{16+(4-x)^{2}}}=0$
(8) The frustum of a pyramid is the bottom portion of the solid with the top sliced off parallel to the base. The formula for the volume of the frustum of a pyramid is given by $V=\frac{a^{2}+a b+b^{2}}{3} h$ where a is the side of one of the square bases, b is the side of the other square base, and h is the altitude of the frustum.
(a) Derive this formula.
(b) Show that this formula becomes the formula for the volume of a pyramid when $b=0$.

Figure 2: Frustum
(9) If $f(x)=a x^{2}+b x+c$ determine the largest domain for which f is invertible and find $f^{-1}(x)$.
(10) San Francisco is located at latitude 37° North. To an observer located in space, how fast (in $\mathrm{km} / \mathrm{hr}$) would residents of SF appear to be moving as they rotated around Earth's axis? Assume $r_{E} \approx 6400 \mathrm{~km}$.
(11) For each of the curves below indicate whether it is increasing or decreasing and whether it is concave up or down.
(a)

(b)

(c)

(d)

(12) Write a possible equation for each curve graphed below.
(a)

(b)

(c)

(d)

(e)

(13) The function $g(x)=\frac{\sin x}{x}$ is defined for all real $x \neq 0$. Define a function $f(x)$ that is identical to g for $x \neq 0$ but is defined and continuous for all real numbers.

