Math 251

Functions and Other Problems

Name:

(1) The conversion formula relating $^{\circ}C$ and $^{\circ}F$ is given by $F = \frac{9}{5}C + 32$. This is often derived from two of the more common reference temperatures: the freezing point of water: $(0^{\circ}C, 32^{\circ}F)$ and the boiling point of water: $(100^{\circ}C, 212^{\circ}F)$. Show this derivation.

(2) Suggest a rule of thumb for converting $^{\circ}C$ to $^{\circ}F$: _____

For what temperatures in $^{\circ}C$ is your approximation . . .

- (a) an underestimate
- (b) an overestimate
- (c) exactly right
- (d) Within $1F^{\circ}$ of correct

(3) Write a piecewise function for the graph shown to the right.

Figure 1: Piecewise Function

(4) DRY OXTAIL IN REAR is an anagram for what word?

- (5) Solve $x^4 13x^2 + 36 = 0$
- (6) Solve $t^{-1/3} 5t^{2/3} = 0$
- (7) Solve $\frac{x}{\sqrt{1+x^2}} \frac{4-x}{\sqrt{16+(4-x)^2}} = 0$
- (8) The frustum of a pyramid is the bottom portion of the solid with the top sliced off parallel to the base. The formula for the volume of the frustum of a pyramid is given by $V = \frac{a^2 + ab + b^2}{3}h$ where a is the side of one of the square bases, b is the side of the other square base, and h is the altitude of the frustum.
 - (a) Derive this formula.
 - (b) Show that this formula becomes the formula for the volume of a pyramid when b = 0.

(9) If $f(x) = ax^2 + bx + c$ determine the largest domain for which f is invertible and find $f^{-1}(x)$.

(10) San Francisco is located at latitude 37° North. To an observer located in space, how fast (in km/hr) would residents of SF appear to be moving as they rotated around Earth's axis? Assume $r_E \approx 6400$ km.

Figure 2: Frustum

(13) The function $g(x) = \frac{\sin x}{x}$ is defined for all real $x \neq 0$. Define a function f(x) that is identical to g for $x \neq 0$ but is defined and continuous for all real numbers.