1. If a fireman leans a 24 foot ladder against a building at a 70° angle,
(a) How far from the building is the base of the ladder?

Solution: We want the distance from the building (labeled x). We know the length of the ladder is 24^{\prime} so relative to the 70° angle we know the hypotenuse and we want the side adjacent so we use cosine:
$\cos 70^{\circ}=\frac{x}{24} \longrightarrow 24 \cos 70^{\circ} \approx 8.2^{\prime}$

(b) How high (above the ground) does the ladder reach on the building?

Solution: We want the distance from the building (labeled y). We know the length of the ladder is 24^{\prime} so relative to the 70° angle we know the hypotenuse and we want the side opposite so we use sine:
$\sin 70^{\circ}=\frac{y}{24} \longrightarrow 24 \sin 70^{\circ} \approx 22.6^{\prime}$
2. A merry-go-round with a 10 ft . diameter is spinning at 12 rpm .
(a) What is the angular velocity of the merry-go-round in radians per second?

Solution: Since there are 2π radians in one full revolution, the merry-go-round is rotating at $12 \cdot 2 \pi=24 \pi$ radians per minute. Then this is the same as $24 \pi \frac{\mathrm{rad}}{\text { minute }} \cdot \frac{1 \text { minute }}{60 \text { seconds }}=\frac{2 \pi}{5} \mathrm{rad}$ per second.
(b) How fast (in feet per second) is Raul traveling if he sits on the outer edge of the merry-go-round?

Solution: Since speed is measured in distance traveled over time, we need to know how far Raul travels in a second or minute. Since he makes 12 full revolutions in a minute and the radius if the merry-go-round is 5 ft , he's covering $12 \cdot 2 \pi(5)=120 \pi$ feet per minute or equivalently $\frac{120 \pi}{60}=2 \pi \mathrm{ft} / \mathrm{sec}$.
(c) How fast is Klaus travelling (in feet per second) if he sits at the center of the merry-go-round?

Solution: Since Klaus is at the center his distance from the center is 0 and therefore isn't going anywhere. While his angular velocity is $\frac{2 \pi}{5} \mathrm{rad}$ per second, his speed is 0 .
3. The functions $\sin x$ and $\cos x$ are almost identical except for horizontal position (see below). That means you should be able to express $\sin x$ as a shift of $\cos x$ and similarly, $\cos x$ as a shift of $\sin x$. Specifically, find c so that $\sin x=\cos (x+c)$ and find c so that $\cos x=\sin (x+c)$.

Solution: In both cases we note that cosine reaches its maximum at $x=0$, that iscos $(0)=1$. Meanwhile sine doesn't reach its maximum until $\frac{\pi}{2}$ radians later. That means in order to get cosine shifted ahead to sine we have to shift it forward by $\frac{\pi}{2}$ radians. Therefore, $\sin x=\cos \left(x-\frac{\pi}{2}\right)$.
Similarly, for sine to catch up with cosine, it has to be shifted ahead by $\frac{\pi}{2}$ radians so $\cos x=\sin \left(x+\frac{\pi}{2}\right)$.
4. Solve the following for $x \in \mathbb{R}$.
(a) $\sin x=1$

Solution: On the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (this is the interval we restrict sine to in order to make arcsin a function) we know $\sin x=1$ when $x=\arcsin (1)=\frac{\pi}{2}$. Since this is the only occurrence on that interval and sine has a period of 2π, the general solution is $x=\frac{\pi}{2}+2 \pi n$, where $n \in \mathbb{Z}$.
(b) $\cos 3 x=1$

Solution: Similar logic here, cosine is usually restricted to the interval $[0, \pi]$ in order to invert it. Then $3 x=\arccos (1) \longrightarrow x=0$. Since $\cos (3 x)$ has a period of $\frac{2 \pi}{3}$, the general solution is $x=0+\frac{2 \pi}{3} n n \in \mathbb{Z}$.
(c) $\sin \left(x^{2}-1\right)=1$

Solution: From part (a) we know the solution to $\sin ()=1$ is $x=\frac{\pi}{2}+2 \pi n, n \in \mathbb{Z}$. In this case x is replaced with $x^{2}-1$ so we have $x^{2}-1=\frac{\pi}{2}+2 \pi n(n \in \mathbb{Z})$. Solving gives us $x= \pm \sqrt{1+\frac{\pi}{2}+2 \pi n},(n \in \mathbb{Z} \geq 0)$. Notice the change from $n \in \mathbb{Z}$ to n in the non-negative integers since the square root has a restricted domain.
5. Find two different equations for the periodic function shown on the right. (One in terms of $\sin x$ and the other in terms of $\cos x$).
Solution: We need to find the constants A, B, C and D in the form $y=A \sin (B x+D)+C$
$C=\frac{-1+7}{2}=3$
$A=7-3=4$
The span from peak to peak is 4π (or the span
 from top to bottom is 2π) so the period is 4π and therefore $B=\frac{1}{2}$.
Finally, since the maximum occurs at π when for sine it normally occurs at $\frac{\pi}{2}$, we need to find C so that $\frac{1}{2}(\pi)+D=\pi \longrightarrow D=0$.
This gives us $y=4 \sin \left(\frac{1}{2} x\right)+3$
Similarly, for cosine we have the same A, B and C so we only need to find D. The maximum or cosine occurs at 0 so we need D so that $\frac{1}{2}(\pi)+D=0 \longrightarrow D=-\frac{\pi}{2}$.
This gives us $y=4 \cos \left(\frac{1}{2} x-\frac{\pi}{2}\right)+3$
6. A mass is suspended at the end of a spring where it hangs 20 cm from the ceiling. It is displaced 8 cm below its rest position and released. It reaches the point closest to the ceiling $(12 \mathrm{~cm})$ after 1 second. Write a periodic model for this situation giving the distance of the mass from the ceiling, y, as a function of time, t.

Solution: Again, we need to find the constants A, B, C and D in the form $y=A \sin (B x+D)+C$. The amplitude, A is the displacement from center so $A=8$ if we make the center $C=20$.
The period is 2 seconds (to return to start) and therefore $B=\pi$. Finally, since the pendulum begins at its maximum displacement we can use cosine (or $-\cos$) and therefore $D=0$. This gives us $y=8 \cos (\pi t)+20$.
7. The table below shows the US average unemployment rate at the beginning of each year from 1993-2003. (Where 1993 is $t=0$).

t (years)	0	1	2	3	4	5	6	7	8	9	10
$U(t)$ (\% unemployment)	7.3	6.6	5.6	5.6	5.3	4.6	4.3	4.0	4.1	5.6	5.7

a) Write a periodic function that models these data using methods discussed in class.

Solution: The maximum unemployment is 7.3% while the minimum is 4.0% so $C=\frac{7.3+4}{2}=5.65$.
Then $A=7.3-5.65=1.65$
It takes seven years to go from the highest to the lowest value so 7 years is half a period and therefore the period is 14 years. It follows that $B=\frac{2 \pi}{14}=\frac{\pi}{7}$.
Finally, if we use cosine which begins at its maximum like the date set, we can ignore D.
This gives us $U(t)=1.65 \cos \left(\frac{\pi}{7} t\right)+5.65$
b) Use your model to predict the unemployment rate for January of 2016.

Solution: From the equation in (a) we have $U(13)=1.65 \cos \left(\frac{\pi}{7}(23)\right)+5.65 \approx 4.6 \%$ unemployment.
(Note that your calculator needs to be in radians, not degrees).
8. Answers: (a) 0.5 mi
(b) 0.8 mi
(c) 20.2 mph
(d) $2 \mathrm{~min}, 19 \mathrm{sec}$.

