```
Mean Value Theorem
If \(f(x)\) is continuous on \([a, b]\) and differentiable on \((a, b)\),
then there is at least one value, \(x=c\), where \(a<c<b\) such that
\[
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\]
```

(1) Sketch a graph representing the hypothesis and conclusion of this theorem.
(2) In essence the Mean Value Theorem (MVT) asserts that a vehicle that averages v mph on a trip will at some time on the trip have been traveling at $v \mathrm{mph}$. Give another real-world example of the MVT.
(3) Sketch a graph or give an example of a function that is continuous on $[a, b]$ but does not satisfy the conclusion of the MVT (Consider the hypotheses of the theorem). Why does it fail?
(4) State the converse of the Mean Value Theorem and draw or give a counterexample showing it is not true.

Consequences of the Mean Value Theorem:

Increasing Function Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then

- If $f^{\prime}(x)>0$ on $a<x<b$, then $f(x)$ is increasing on $a \leq x \leq b$.
- If $f^{\prime}(x) \geq 0$ on $a<x<b$, then $f(x)$ is nondecreasing on $a \leq x \leq b$.
(5) An example of the increasing function theorem would be to say that a car experiencing positive acceleration will be speeding up. Give another real-world example of the Increasing Function Theorem.
(6) State the converse of the IFT (assume $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b)) and provide a counterexample or drawing showing it is not true.

Constant Function Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then If $f^{\prime}(x)=0$ on $a<x<b$, then $f(x)$ is constant on $a \leq x \leq b$.
(7) State the converse of the CFT (assume $f(x)$ is continuous on $[a, b]$ and differentiable on $(a, b))$. Prove that the converse is true.
(8) Give an example of a discontinuous function that is not constant (show why we need the requirement that $f(x)$ is continuous).

The Racetrack Principle

Suppose $f(x)$ and $g(x)$ are continuous on $[a, b]$ and differentiable on (a, b).
Also suppose that $f^{\prime}(x) \leq g^{\prime}(x)$ on (a, b). Then

- If $f(a)=g(a)$, then $f(x) \leq g(x)$ for $a \leq x \leq b$.
- If $f(b)=g(b)$, then $f(x) \geq g(x)$ for $a \leq x \leq b$.
(9) Sketch graphs illustrating the hypothesis and conclusion(s) of the Racetrack Principle.
(10) Use an example to illustrate the racetrack principle (both parts).
(11) Is it true that for continuous (on $[a, b]$), differentiable (on (a, b)) functions f and g, if $f(x) \leq g(x)$ and $f(a)=g(a)$, then $f^{\prime}(x) \leq g^{\prime}(x)$ on (a, b) ? Please support your answer.
(12) Show the tangent line approximation for $y=\ln x$ at $x=1$ is $y=x-1$ and use the Racetrack Principle to show that $x-1 \geq \ln x$ for all x in the domain of $y=\ln x$.

Equal Derivatives

Suppose $f(x)$ is differentiable for all x in the domain of f.
If $f(x)=g(x)+C, C \in \mathbb{R}$,
Then $f^{\prime}(x)=g^{\prime}(x)$

You should see that this is a consequence of the addition property of derivatives.
(13) State the converse of the theorem above. Do you think it is true? Please provide some reflections.

