Math 251
Polynomial Notes

1. Find the x-intercepts of $f(x)=\cos \left(x^{2}-1\right)$ for $x \in \mathbb{R}$.

Solution: Since $\cos \theta=0$ for $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots, \frac{\pi}{2}+n \pi, n \in \mathbb{Z}$, it follows that $x^{2}-1=\frac{\pi}{2}+n \pi \longrightarrow x^{2}=1+\frac{\pi}{2}+n \pi$ so $x= \pm \sqrt{1+\frac{\pi}{2}+n \pi}, n \in \mathbb{Z}_{\geq 0}$.
2. Determine a reasonable equation for $g(x)$ below.

Solution: This is essentially finding the equation of a polynomial that crosses the x-axis, only we have to shift it down to do that.
Consider the graph labeled $g(x)-5$ to see $g(x)$ shifted down 5 units. Now we can see the x-intercepts are $x=-7,-3$, and 2 so we have $g(x)-5=a(x+7)(x+3)(x-2)$.
When $x=0, g(x)-5=3$ so the y-intercept is 3 and we solve to get $a=\frac{3}{-42}=\frac{-1}{14}$.
Then $g(x)-5=\frac{-1}{14}(x+7)(x+3)(x-2)$.

3. Complete the table below if f is linear, g is quadratic, and h is exponential.

t	-3	-2	-1	0	1	2	3
$f(t)$	7	3	-1	-5	-9	-13	-17
$g(t)$	7	3	-5	-17	-33	-53	-77
$h(t)$	7	3	$\frac{9}{7}$	$\frac{27}{49}$	$\frac{81}{343}$	$\frac{243}{2401}$	$\frac{729}{16807}$

4. A person's weight varies (approximately) with the cube of their height. If Larry is $5^{\prime} 8^{\prime \prime}$ and weighs 160 pounds, how much would Aaron who is $6^{\prime} 2^{\prime \prime}$ weigh assuming his build is of similar proportion.

Solution: $w=k h^{3} \longrightarrow 160=k(68)^{3} \longrightarrow k \approx 0.0005089$.
Then $w \approx(0.0005089) h^{3}$
So $w \approx(0.0005089)(74)^{3}=206$ pounds.

5 . The base diameter of a tree (measured in cm) varies directly with the $\frac{3}{2}$ power of its height (measured in meters).
(a) If a tree 5 meters high has a base diameter of 14.5 cm , find the constant of proportionality and write a function relating the height and base diameter of any similar trees.
Solution: $d=k h^{3 / 2} \longrightarrow 14.5=k(5)^{3 / 2} \longrightarrow k \approx 1.2969$.
Then $d \approx 1.2969 h^{3 / 2}$.
(b) Find the height of a tree with a base diameter of 238 cm .

Solution: S0 $238 \approx 1.2969 h^{3 / 2} \longrightarrow \frac{238}{1.2969} \approx h^{3 / 2} \longrightarrow h \approx$ $(183.512)^{2 / 3}=32.29$ meters.

6 . The graph below is a translation of the function $f(x)=\frac{1}{x}$.
Find a possible formula for the graph and apply
algebra to write it as the ratio of two linear functions.
Solution: Compared with the graph of $f(x)=\frac{1}{x}$, this looks like:
f flipped over the x-axis (so multiplied by -1);
shifted horizontally 2 spaces to the right $(x-2)$;
and shifted vertically down three spaces $(f(x)-3)$.
Therefore we have the new function: $y=\frac{-1}{x-2}-3$.
Simplifying gives us $y=\frac{5-3 x}{x-2}$.

7. Give a possible equation for the function graphed below.

Solution: This graph has vertical asymptotes at $x=-4$ and $x=3$, usually a sign that we are dividing by zero at these points. Therefore we put $(x+4)(x-3)$ in the denominator.
Checking on the calculator shows that the graph of $y=\frac{1}{(x+4)(x-3)}$ looks similar but has its horizontal asymptote at $y=0$, rather than at $y=-2$. The simple solution, then, is to shift $y=\frac{1}{(x+4)(x-3)}$ down two spaces by writing: $y=\frac{1}{(x+4)(x-3)}-2$ or equivalently, $y=\frac{1-2(x+4)(x-3)}{(x+4)(x-3)}=\frac{-2 x^{2}-2 x+25}{x^{2}+x-12}$.

8. Determine the zeros, y-intercept, and asymptotes (vertical and horizontal) for the function below. Then sketch it.

$$
g(x)=\frac{x^{2}-25}{x^{2}-4 x-12}
$$

Solution: Zeros occur where the numerator is 0 (and the denominator is not). So at $x^{2}-25=0 \longrightarrow x= \pm 5$. The y-intercept occurs where $x=0$ so at $\frac{-25}{-12}=2 \frac{1}{12}$.
$g(x)$ has vertical asymptotes where the denominator (and not the numerator) is 0 so where $x^{2}-4 x-12=(x-6)(x+2)=0$ or at $x=6$ and $x=2$. Horizontal asymptotes occur over the long term, so as x grows very large. Notice that as x gets big, the largest powers in the polynomials dominate so $x \rightarrow \infty: \frac{x^{2}-25}{x^{2}-4 x-12} \rightarrow \frac{x^{2}}{x^{2}}=1$. Therefore there is a horizontal asymptote at $y=1$.
9. Suppose $f(1)=5$ and $f(5)=16$. Find a possible formula for f if f is
(a) linear (b) exponential

Solution: We have points $(1,5)$ and $(5,16)$ so the slope is $m=\frac{16-5}{5-1}=\frac{11}{4}$.
Using the point $(1,5)$ we find b from our equation: $y=\frac{11}{4} x+b$:
$5=\frac{11}{4}(1)+b \longrightarrow b=\frac{9}{4}$
So $f(x)=\frac{11}{4} x+\frac{9}{4}$.

Solution: We have points $(1,5)$ and $(5,16)$ so inserting the values into the equation $y=a \cdot b^{x}$ gives us:
$16=a \cdot b^{5}$ and $5=a \cdot b^{1}$. Dividing the first equation by the second produces:
$\frac{16}{5}=b^{4} \longrightarrow b=\sqrt[4]{\frac{16}{5}}=\left(\frac{16}{5}\right)^{1 / 4}$
Then we have $y=a \cdot\left(\left(\frac{16}{5}\right)^{1 / 4}\right)^{x}$ or
equivalently $y=a \cdot\left(\frac{16}{5}\right)^{x / 4}$, so
$5=a \cdot\left(\frac{16}{5}\right)^{1 / 4} \longrightarrow a=5\left(\frac{5}{16}\right)^{1 / 4}=\frac{5 \sqrt[4]{5}}{2}$
So $f(x)=\frac{5 \sqrt[4]{5}}{2} \cdot\left(\frac{16}{5}\right)^{x / 4} \approx 3.74(1.34)^{x}$
(c) power function

Solution: We have points (1, 5) and $(5,16)$ so inserting the values into the equation $y=k \cdot x^{n}$ gives us:
$16=k \cdot 5^{n}$ and $5=k \cdot 1^{n}$.
From the second equation we have $k=5$ and substituting into the first gives us: $16=5 \cdot 5^{n}$.
Then $\frac{16}{5}=5^{n} \longrightarrow \log \left(\frac{16}{5}\right)=n \log 5$
So $n=\frac{\log \left(\frac{16}{5}\right)}{\log 5} \approx 0.723$ and we have $f(x) \approx 5 \cdot x^{0.723}$.
10. Find $f^{-1}(x)$ for $f(x)=\frac{2 x-1}{5-3 x}$.

Solution: $y=\frac{2 x-1}{5-3 x} \longrightarrow x=\frac{2 y-1}{5-3 y} \longrightarrow x(5-3 y)=2 y-1 \longrightarrow 5 x-3 x y=2 y-1$
Then $5 x+1=2 y+3 x y \longrightarrow 5 x+1=y(2+3 x) \longrightarrow y=\frac{5 x+1}{2+3 x}$ So $f^{-1}(x)=\frac{5 x+1}{2+3 x}$.

