Problems

It follows we need to maximize $C = (0.05)\pi r^2 + \frac{14.2}{r}$.

8.

(a) When $x = 1, A = \frac{1}{2}$.

Hint: Area of rectangle is given by base (x) and height $(y = \frac{1}{x^2+1})$ so $A = \frac{x}{x^2+1}$. Find max. of this function.

(b) No. IP at $x = \sqrt{\frac{1}{3}}$

Hint: Want y'' (NOT A''). Note $y'' = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}$.

9. $r = \frac{20\sqrt{2}}{3}$ cm, $h = \frac{40}{3}$ cm.

Hint: If r is the radius of the base of the cone, then using the radius of the sphere = 10cm and Pythagoras, we have the height of the cone, $h = 10 + \sqrt{10^2 - r^2}$, assuming the cone extends below the equator. Note: If h < 10, (so the base of the cone is above the equator) then we have $h = 10 - \sqrt{10^2 - r^2}$. Can you see why there is a cone with the same base area but h > 10 so we can ignore all cones where h < 10? From this it follows $V = \frac{1}{3}\pi r^2 (10 + \sqrt{10^2 - r^2})$ BUT this produces a really unpleasant derivative. Consider instead writing V as a function of h. From above you should see that $r^2 = 20h - h^2$. Use this to help.

10. We want to maximize A = xy with the constraint that 2x + 2y = k. $2x + 2y = k \longrightarrow y = \frac{k-2x}{2}$.

Then $A = x\left(\frac{k-2x}{2}\right) = \frac{1}{2}kx - x^2$. So $\frac{dA}{dx} = \frac{k}{2} - 2x = 0 \longrightarrow x = \frac{k}{4}$. Since $\frac{d^2A}{dx^2} = -2$, this is a maximum. It follows that since $y = \frac{k-2(\frac{k}{4})}{2} = \frac{k}{4}$, the rectangle is a square.

11. (a) 3573.3' from the box along the road.

Hint: Want to minimize cost: $C = 35\sqrt{900^2 + x^2} + 20(4200 - x)$. Notice the domain bounds: [0, 4200] and what they mean in this context. x = 4200would be the shortest overall *distance*, while x = 0 would be the shortest path through the forest.

- (b) 109,850.53 (Note that C(0) = 115,500)
- (c) 150,337.12 (when x = 4200)

12. 36π

13. $\frac{\pi}{4}$

14. (a) 20' for circle and 0' for square.

(b) $\frac{20\pi'}{\pi+4}$ for circle and $\frac{80}{\pi+4}$ for square.

15. \$37

