Problems

Show all relevant work!

You may use a calculator to verify solutions, but not to provide them.

1. $900 \mathrm{cc} / \mathrm{sec}$

Hint: $\frac{\mathrm{d} x}{\mathrm{~d} t}=3 \mathrm{~cm} / \mathrm{sec}$., want $\frac{\mathrm{d} V}{\mathrm{~d} t}$, and we know $V=x^{3}$ so $\frac{\mathrm{d} V}{\mathrm{~d} x}=3 x^{2}$
2. $\frac{1}{30} \mathrm{~m} / \mathrm{min}$ or $\frac{10}{3} \mathrm{~cm} / \mathrm{min}$.

Hint: Want $\frac{\mathrm{d} h}{\mathrm{~d} t}$ and we know $\frac{\mathrm{d} V}{\mathrm{~d} t}=15 \mathrm{~m}^{3} / \mathrm{min}$.
The volume of the pool for $h \leq 2$ is $V=\frac{1}{2} 15 \cdot h \cdot x$.
From the triangle, we have $\frac{x}{h}=\frac{30}{2} \longrightarrow x=15 h$.
So $V=\frac{225}{2} h^{2}$ and $\frac{\mathrm{d} V}{\mathrm{~d} h}=225 h \longrightarrow=450$ at $h=2$.

3. Draining at $\frac{49 \pi}{36} \mathrm{ft} / \mathrm{min}$.

Hint: Want $\frac{\mathrm{d} V}{\mathrm{~d} t}$ and we know $\frac{\mathrm{d} h}{\mathrm{~d} t}=-0.25 \mathrm{ft} / \mathrm{min}$.
To relate V and h we know $V=\frac{1}{3} \pi r^{2} h$ but we need to eliminate the r so use similar triangles: $\frac{r}{h}=\frac{7}{12} \longrightarrow r=\frac{7}{12} h$.
Then $V=\frac{1}{3} \pi\left(\frac{7}{12} h\right)^{2} h=\frac{49 \pi}{432} h^{3}$ and $\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{49 \pi}{144} h^{2}$.
4 . (a) $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{24}{\pi} \mathrm{in} / \mathrm{sec}$.
Hint: Want $\frac{\mathrm{d} P}{\mathrm{~d} t}$ and we know $\frac{\mathrm{d} C}{\mathrm{~d} t}=6 \mathrm{in} / \mathrm{sec}$. To relate P and C note that the side of the square is equal to $2 r$ so $P=8 r$. Then since $C=2 \pi r \longrightarrow r=\frac{C}{2 \pi}$ So $P=8\left(\frac{C}{2 \pi}\right)=\frac{4 C}{\pi}$. It follows $\frac{\mathrm{d} P}{\mathrm{~d} C}=\frac{4}{\pi}$.
(b) $\frac{\mathrm{d} A}{\mathrm{~d} t}=120\left(\frac{1}{\pi}-\frac{1}{4}\right) \mathrm{in}^{2} / \mathrm{sec}$

Hint: Want $\frac{\mathrm{d} A}{\mathrm{~d} t}$ and we know $\frac{\mathrm{d} C}{\mathrm{~d} t}=6 \mathrm{in} / \mathrm{sec}$. To relate A and C note that the side of the square is equal to $2 r$ so $A_{\square}=(2 r)^{2}$. Then since $C=2 \pi r \longrightarrow r=\frac{C}{2 \pi}$ So $A_{\square}=\left(2 \cdot \frac{C}{2 \pi}\right)^{2}=\frac{C^{2}}{\pi^{2}}$. Then $A=\frac{C^{2}}{\pi^{2}}-\frac{C^{2}}{4 \pi}$.
It follows $\frac{\mathrm{d} A}{\mathrm{~d} C}=2 C\left(\frac{1}{\pi^{2}}-\frac{1}{4 \pi}\right)$. When $A=25 \pi \rightarrow r=5$ so $C=10 \pi$.
$5 . \frac{10}{3} \mathrm{~cm}^{2} / \mathrm{sec}$.
Hint: Want $\frac{\mathrm{d} A}{\mathrm{~d} t}$ and we know $\frac{\mathrm{d} V}{\mathrm{~d} t}=10 \mathrm{cc} / \mathrm{sec}$. To relate A and V note that both are given in terms of r :
$A=4 \pi r^{2}$ and $V=\frac{4}{3} \pi r^{3}$ so $V=\frac{4}{3} \pi\left(\frac{A}{4 \pi}\right)^{3 / 2}$. It follows $\frac{\mathrm{d} V}{\mathrm{~d} A}=\frac{1}{2}\left(\frac{A}{4 \pi}\right)^{1 / 2}$.
6. 800 m of the $\$ 1 / \mathrm{m}$ fence and 200 m of the $\$ 2 / \mathrm{m}$ fence. The cost will be $\$ 1200$.

Hint: If x is the front and y represents the sides, we have (1) $x \cdot y=60000$ and (2) $C=2 x+1 y+1 x+1 y$.
Simplifying and substituing (1) we have $C=3 x+2\left(\frac{60000}{x}\right)$.
7 . $r \approx 3.56 \mathrm{~cm}$ and $h \approx 8.91 \mathrm{~cm}$.
Hint: Want to minimize cost through surface area: $C=(0.03) \pi r^{2}+(0.02) 2 \pi r h+(0.02) \pi r^{2}=(0.05) \pi r^{2}+0.04 \pi r h$.
The additional constraint is $V=\pi r^{2} h=355$. Substituting the constraint for h gives $C=(0.05) \pi r^{2}+0.04 \pi r\left(\frac{355}{\pi r^{2}}\right)$.
It follows we need to maximize $C=(0.05) \pi r^{2}+\frac{14.2}{r}$.
8. (a) When $x=1, A=\frac{1}{2}$.

Hint: Area of rectangle is given by base (x) and height $\left(y=\frac{1}{x^{2}+1}\right)$ so $A=\frac{x}{x^{2}+1}$. Find max. of this function.
(b) No. IP at $x=\sqrt{\frac{1}{3}}$

Hint: Want $y^{\prime \prime}\left(\right.$ NOT $\left.A^{\prime \prime}\right)$. Note $y^{\prime \prime}=\frac{2\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}}$.
9. $r=\frac{20 \sqrt{2}}{3} \mathrm{~cm}, h=\frac{40}{3} \mathrm{~cm}$.

Hint: If r is the radius of the base of the cone, then using the radius of the sphere $=10 \mathrm{~cm}$ and Pythagoras, we have the height of the cone, $h=10+\sqrt{10^{2}-r^{2}}$, assuming the cone extends below the equator.
Note: If $h<10$, (so the base of the cone is above the equator) then we have $h=10-\sqrt{10^{2}-r^{2}}$. Can you see why there is a cone with the same base area but $h>10$ so we can ignore all cones where $h<10$?
From this it follows $V=\frac{1}{3} \pi r^{2}\left(10+\sqrt{10^{2}-r^{2}}\right)$ BUT this produces a really unpleasant derivative.
Consider instead writing V as a function of h. From above you should see that $r^{2}=20 h-h^{2}$. Use this to help.
10. We want to maximize $A=x y$ with the constraint that $2 x+2 y=k .2 x+2 y=k \longrightarrow y=\frac{k-2 x}{2}$.

Then $A=x\left(\frac{k-2 x}{2}\right)=\frac{1}{2} k x-x^{2}$. So $\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{k}{2}-2 x=0 \longrightarrow x=\frac{k}{4}$. Since $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=-2$, this is a maximum.
It follows that since $y=\frac{k-2\left(\frac{k}{4}\right)}{2}=\frac{k}{4}$, the rectangle is a square.
11. (a) 3573.3^{\prime} from the box along the road.

Hint: Want to minimize cost: $C=35 \sqrt{900^{2}+x^{2}}+20(4200-x)$. Notice the domain bounds: $[0,4200]$ and what they mean in this context. $x=4200$ would be the shortest overall distance, while $x=0$ would be the shortest path through the forest.
(b) $\$ 109,850.53$ (Note that $C(0)=\$ 115,500)$
(c) $\$ 150,337.12$ (when $x=4200$)

12.36π
13. $\frac{\pi}{4}$

14 . (a) 20^{\prime} for circle and 0^{\prime} for square.
(b) $\frac{20 \pi}{\pi+4}{ }^{\prime}$ for circle and $\frac{80}{\pi+4}^{\prime}$ for square.
15. $\$ 37$

