3.1 Notes

1. Some elementary derivatives. $\frac{\mathrm{d}}{\mathrm{d} x} k$: The derivative of a constant. \quad Some arguments for $\frac{\mathrm{d}}{\mathrm{d} x} k=0$:

Graphically:

The derivative gives the slope of the fuction at x.
For a constant function, the slope is 0 so $\frac{\mathrm{d}}{\mathrm{d} x} k=0$.

$\frac{\mathrm{d}}{\mathrm{d} x}(m x+b)$: The derivative of a linear function.
Numerically:

x	-3	0	3	6	9
$f(x)$	k	k	k	k	k
$\underbrace{}_{0}$	$\underbrace{}_{0}$	$\underbrace{}_{0}$			

Algebraically (from definition):

$$
\frac{\mathrm{d}}{\mathrm{~d} x} k=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{k-k}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0
$$

Some arguments for $\frac{\mathrm{d}}{\mathrm{d} x}(m x+b)=m$:
Graphically:
The derivative gives the slope of the fuction at x.
For a linear function, the slope is m so $\frac{\mathrm{d}}{\mathrm{d} x}(m x+b)=m$.

Numerically:

Algebraically (from definition):

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(m x+b) & =\lim _{h \rightarrow 0} \frac{m(x+h)+b-(m x+b)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m h}{h}=\lim _{h \rightarrow 0} m=m
\end{aligned}
$$

2. Some derivative properties
$\frac{\mathrm{d}}{\mathrm{d} x} k f(x)$: The derivative of a constant times a function.
Numerical intuition: Find the slopes between each pair of points to approximate the derivative of $f(x)$:

x	-3	0	3	6	9
$f(x)$	10	8	1	5	11

Now repeat for the function $y=5 f(x)$:

$$
\begin{array}{c|c|c|c|c|c}
x & -3 & 0 & 3 & 6 & 9 \\
\hline 5 f(x) & 50 & 40 & 5 & 25 & 55
\end{array}
$$

How are the slopes of the two tables related?

The proof follows similar logic but uses limit properties and the definition of a derivative function which may make it seem more abstract.
Remember the definition of the derivative function is $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Proof:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} k f(x) & =\lim _{h \rightarrow 0} \frac{k f(x+h)-k f(x)}{h} \\
& =\lim _{h \rightarrow 0} k \frac{f(x+h)-f(x)}{h} \\
& =k \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =k f^{\prime}(x)
\end{aligned}
$$

$\frac{\mathrm{d}}{\mathrm{d} x}(f(x)+g(x))$: The derivative of the sum of functions.
Numerical intuition: Find the slopes between each pair of points to approximate the derivatives of $f(x)$ and $g(x)$:

$$
\begin{array}{c|c|c|c|c|c}
x & -3 & 0 & 3 & 6 & 9 \\
\hline f(x) & 10 & 8 & 1 & 5 & 11
\end{array} \quad \begin{array}{c|c|c|c|c|c}
x & -3 & 0 & 3 & 6 & 9 \\
\hline g(x) & -2 & 1 & 6 & 15 & 27
\end{array}
$$

Now repeat for the function $y=f(x)+g(x)$:

x	-3	0	3	6	9
$f(x)+g(x)$	8	9	7	20	38

How are the slopes of f, g, and $f+g$ related?

The proof follows:

Proof:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(f(x)+g(x)) & =\lim _{h \rightarrow 0} \frac{(f(x+h)+g(x+h))-(f(x)+g(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

The same argument applies to $\frac{\mathrm{d}}{\mathrm{d} x}(f(x)-g(x))$ so in general we say $\frac{\mathrm{d}}{\mathrm{d} x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)$.

3 . You might wonder if the same is true of the product of two functions, $\frac{\mathrm{d}}{\mathrm{d} x}(f(x) \cdot g(x))$. As before, it's worth some time to explore intuitively first so reuse the tables above to see if $\frac{\mathrm{d}}{\mathrm{d} x}(f(x) \cdot g(x)) \stackrel{?}{=} f^{\prime}(x) \cdot g^{\prime}(x)$.

x	-3	0	3	6	9
$f(x)$	10	8	1	5	11

x	-3	0	3	6	9
$g(x)$	-2	1	6	15	27

x	-3	0	3	6	9
$f(x) \cdot g(x)$	-20	8	6	75	297

What does this suggest is (or isn't) true about $\frac{\mathrm{d}}{\mathrm{d} x}(f(x) \cdot g(x))$?

4. Power Rule Examples:

(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(5 x^{2}\right)$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\pi x^{5}-\frac{2}{x^{3}}\right)$
(c) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{x}-\frac{3}{\sqrt{x}}+\sqrt[5]{x^{3}}\right)$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{4}-7 x}{x^{2}}\right)$

