Some Solutions

0.1 Shifts and Stretches

Shifts (vertical)
graphic:

tabular:

$$
\begin{array}{||c|c|c|c|c|c|}
\hline x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & 4 & 2 & 0 & 2 & 5 \\
\hline
\end{array}
$$

x	-2	-1	0	1	2
$f(x)+a$	6	4	2	4	7

x	-2	-1	0	1	2
$f(x)-a$	2	0	-2	0	3

$$
\text { (e.g. } a=2 \text {) }
$$

Shifts (horizontal) graphic:

Reflections graphic:

tabular:

x	-2	-1	0	1	2
$f(x)$	4	2	0	2	5

x	-2	-1	0	1	2
$-f(x)$	-4	-2	0	-2	-5

x	-2	-1	0	1	2
$f(-x)$	5	2	0	2	4

Stretches/Compressions (vertical)

graphic:

tabular:

x	-2	-1	0	1	2
$f(x)$	4	2	0	2	5

x	-2	-1	0	1	2
$a f(x)$	8	4	0	4	10

(e.g. $a=2$)

x	-2	-1	0	1	2
$a f(x)$	2	1	0	1	2.5

(e.g. $a=\frac{1}{2}$)

Stretches/Compressions (horizontal)
graphic:

tabular:

x	-2	-1	0	1	2
$f(x)$	4	2	0	2	5

x	-2	-1	0	1	2
$f(a x)$		4	0	5	

(e.g. $a=2$)

x	-2	-1	0	1	2
$f(a x)$	2		0		2

(e.g. $a=\frac{1}{2}$)

In each of the preceding cases, discuss the effects of the shift or stretch on the average rate of change of the function on the interval $[-2,2]$.
Note: It's worth some discussion to note which manipulations effect a change in the average rate of change and which don't.

0.2 Odd \& Even Functions

Sketch the following functions.

1. Sketch the indicated reflection over the graph of $g(x)$ in each exercise.
(a) $-f(x)$

(b) $f(-x)$

(c) $-f(-x)$

2. Sketch the indicated function over the graph of $f(x)$ in each exercise.
(a) $-f(x)$

(b) $f(-x)$

(c) $-f(-x)$

3. Sketch the indicated function over the graph of $f(x)$ in each exercise.
(a) $-f(x)$
(b) $f(-x)$

(c) $-f(-x)$

Questions 0.1

1. Sums. Give either a proof or a counter example for each.
(a) Is the sum of an odd function and an odd function even? Odd? Neither?

Solution:

Let $h(x)=f(x)+g(x)$ where f and g are both odd.
$h(-x)=f(-x)+g(-x)$

$$
=-f(x)+-g(x) \quad \text { Since both } f \text { and } g \text { are odd. }
$$

$$
=-(f(x)+g(x))
$$

$$
=-h(x)
$$

Therefore the sum of two odd functions is odd.
(b) Is the sum of an odd function and an even function odd? Even? Neither?

Solution:

Neither. For example, if $f(x)=x^{2}$ and $g(x)=x^{3}$, then $h(x)=f(x)+g(x)=x^{2}+x^{3}$.
But $h(-1)=0$ while $h(1)=2$ so $h(-1) \neq h(1)$ and $h(-1) \neq-h(1)$.
2. Products. Give either a proof or a counter example for each. See above for similar solutions.

0.3 Compositions

1. If $h(x)=f(g(x))$, decompose each function into functions f and g where $f(x) \neq x$ and $g(x) \neq x$.
(a) $h(x)=\sin \left(x^{2}+1\right)$
$f(x)=$ \qquad $g(x)=\quad x^{2}+1$
(d) $h(x)=e^{-x^{2}}$

$$
f(x)=\frac{e^{x}}{} \quad g(x)=\quad-x^{2}
$$

(b) $h(x)=(3 x-2)^{3}$

$$
f(x)=\frac{x^{3}}{} \quad g(x)=\frac{3 x-2}{}
$$

(e) $h(x)=\frac{1}{\sqrt{3-x}}$

$$
f(x)=x^{-1 / 2} \quad g(x)=\quad 3-x
$$

(c) $h(x)=\frac{1}{x^{2}-4}$

$$
f(x)=\frac{1}{x} \quad g(x)=\quad x^{2}-4
$$

(f) $h(x)=\frac{1}{x^{2}}-4$
$f(x)=$ \qquad $g(x)=$ \qquad
2. What are the domains of the following functions?
(a) $a(x)=\ln x$
(b) $b(x)=\frac{1}{x^{2}+1}$
(c) $c(x)=a(b(x))$
(d) $d(x)=b(a(x))$

Solution:

(a) $x \in \mathbb{R}^{+}$
(b) $x \in \mathbb{R}$
(c) $x \in \mathbb{R}$
(d) $x \in \mathbb{R}^{+}$
3. (a) On what interval in $[-\pi, \pi]$ is the function $s(x)=x^{2}$ increasing? On what interval is it decreasing?

Solution: Increasing on $[0, \pi]$, decreasing on $[-\pi, 0]$
(b) On what interval(s) in $[-\pi, \pi]$ is the function $t(x)=\sin x$ increasing? Decreasing?

Solution: Increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, decreasing on $\left[-\pi,-\frac{\pi}{2}\right]$ and $\left[\frac{\pi}{2}, \pi\right]$.
(c) On what interval(s) in $[-\pi, \pi]$ is the function $w(x)=t(s(x))$ increasing? Decreasing?

Solution: Increasing on $\left[-\pi,-\sqrt{\frac{5 \pi}{2}}\right],\left[-\sqrt{\frac{3 \pi}{2}},-\sqrt{\frac{\pi}{2}}\right],\left[0, \sqrt{\frac{\pi}{2}}\right]$, and $\left[\sqrt{\frac{3 \pi}{2}}, \sqrt{\frac{5 \pi}{2}}\right]$.
Decreasing on $\left[-\sqrt{\frac{5 \pi}{2}},-\sqrt{\frac{3 \pi}{2}}\right],\left[-\sqrt{\frac{\pi}{2}}, 0\right],\left[\sqrt{\frac{\pi}{2}}, \sqrt{\frac{3 \pi}{2}}\right]$, and $\left[\sqrt{\frac{5 \pi}{2}}, \pi\right]$.
4. The tables of $m(x)$ and $p(x)$ are given below.

x	-6	-4	-2	0	2	4	6
$m(x)$	-1	5	8	7	3	-2	-11

If $u(x)=p(m(x))$, find \ldots

x	-7	-1	5	8	7	3	-2
$p(x)$	-6	-4	-2	0	2	4	6

(a) $u(0)=$ \qquad

If $w(x)=m(p(x))$, find \ldots
(c) $w(-1)=$ \qquad
(b) $u(2)=$ \qquad
(d) $w(2)=$ Undefined
\qquad
(e) For what value of x is $w(x)=7$? \quad At $x=8$.

5 . Suppose $f(x)$ is an even function and $g(x)$ is an odd function. If $h(x)=f(g(x))$ and $k(x)=g(f(x))$, comment on whether they are even, odd, or neither.

Solution: Both are even functions. $h(-x)=f(g(-x))=f(-g(x))=f(g(x))=h(x)$, and $k(-x)=g(f(-x))=g(f(x)=k(x)$.

6 . Use the functions, $f(x)$ and $g(x)$ graphed below to help you sketch $h(x)=f(g(x))$.

Solution: Generating the table below helps to produce the graph.

x	-3	-2	-1	0	1	2	3
$g(x)$	2.5	1.8	1	0.2	-0.4	0	0.5
$f(g(x))$	-1.5	-0.3	0.5	0.9	1	0.95	0.8

7 . $g(x)$ is a translation of the parabola $f(x)$ as shown below. Write functions for vertical, $v(x)$, and horizontal, $h(x)$, translations and express $g(x)$ as a composition in terms of f, h, and v.

$$
\begin{aligned}
& h(x)=\frac{x-3}{}=\frac{x-2}{v(x)}=\begin{array}{l}
\\
g(x)
\end{array}=\quad v(f(h(x)))
\end{aligned}
$$

0.4 Inverses

1. Are the functions describing these situations invertible?
(a) The temperature of an oven as a function of the time since it was turned on.

Solution: While the oven is heating up, yes. Once it levels off to a constant temperature, no.
(b) The number of people on a bus as a function of the time of day.

Solution: Generally, no. Since the population rises and falls with time, there are probably many times when the population of the bus will be the same.
2. For $g(x)=10^{x}-x$, find $g^{-1}(997)$.

Solution: Since $g(3)=997$, it follows that $g^{-1}(997)=3$.
3. For each function below, identify a proper domain and give the inverse function.
a) $f(x)=e^{1-3 x}$
b) $g(x)=x^{2}-1$
c) $h(x)=\frac{x}{x+1}$

Solution:

(a) $f(x)$:

Domain: $x \in \mathbb{R}$
Range: $y \in \mathbb{R}^{+}$
$f^{-1}(x)=\frac{1-\ln x}{3}$
Domain: $x \in \mathbb{R}^{+}$
Range: $y \in \mathbb{R}$
To find f^{-1} :
$y=e^{1-3 x}$
$x=e^{1-3 y}$
$\ln x=1-3 y$
$\ln x-1=-3 y$
$\frac{1-\ln x}{3}=y$
(b) $g(x)$:

Domain: $x \in \mathbb{R}$
Range: $y \geq-1$
$g^{-1}(x)=\sqrt{x+1}$
Domain: $x \geq-1$
Range: $y \geq 1$
To find g^{-1} :
$y=x^{2}-1$
$x=y^{2}-1$
$x+1=y^{2}$
$\sqrt{x+1}=y$
(c) $h(x)$:

Domain: $x \neq-1$
Range: $y \geq-1$
$h^{-1}(x)=\frac{x}{1-x}$
Domain: $y \geq-1$
Range: $x \neq-1$
To find h^{-1} :
$y=\frac{x}{x+1}$
$x=\frac{y}{y+1}$
$x(y+1)=y$
$x y+x=y$
$x=y-x y$
$x=y(1-x)$
$\frac{x}{1-x}=y$

