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0.1 Limits

The technical definition of a limit is based on the idea that if we have correctly identified the limiting quantity,
then we should be able to get the function output as close to it as we want by making the input values close
enough to the limit index.



0.1 Limits

The technical definition of a limit is based on the idea that if we have correctly identified the limiting quantity,
then we should be able to get the function output as close to it as we want by making the input values close
enough to the limit index.

The naive interpretation means that if lim
x→5

x2 = 25 , then we should

be able to find a value of x close enough to 5 so that we can be as
close as we want to 25.

If, for example, we wanted to be within 0.01 of 25 (think of tol-
erances), then we would solve |x2 − 25| < 0.01 or equivalently,
−0.01 < x2 − 25 < 0.01.

Solving gives us
√

24.99 < x <
√

25.01
or about 4.9989999 < x < 5.0009999. Subtracting 5 gives us
−0.0010001 < x − 5 < 0.0009999 and since the smaller side of the
interval (0.0009999) guarantees a safe solution, we know x2 will
always be within 0.01 of 25 if x is within 0.0009999 of 5.
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While the example above gives some idea of the process for proving a limit exists, it is only practical to use
numerical methods when applying the idea of tolerances or a similar application. The actual definition of a
limit was designed to create a sound basis for the theory of calculus. The proper definition follows:
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Definition: The limit lim
x→c

f(x) is defined to be the number L (if it exists)

such that for any ε > 0 we choose, there is a δ > 0 where |x− c| < δ (but
x 6= c) guarantees that |f(x)− L| < ε.
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such that for any ε > 0 we choose, there is a δ > 0 where |x− c| < δ (but
x 6= c) guarantees that |f(x)− L| < ε.

The proof of lim
x→5

x2 = 25 would therefore be directed to finding a general rule (formula) that would assure a

suitable δ for any choice of ε. This is sometimes described as winning the ε− δ game. (Every time you declare
a bounding value ε, I have to be able to respond with a suitable δ to satisfy the definition.
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Definition: The limit lim
x→c

f(x) is defined to be the number L (if it exists)

such that for any ε > 0 we choose, there is a δ > 0 where |x− c| < δ (but
x 6= c) guarantees that |f(x)− L| < ε.

The proof of lim
x→5

x2 = 25 would therefore be directed to finding a general rule (formula) that would assure a

suitable δ for any choice of ε. This is sometimes described as winning the ε− δ game. (Every time you declare
a bounding value ε, I have to be able to respond with a suitable δ to satisfy the definition.

We begin by stating our desired result: |x2 − 25| < ε. Then we have |x− 5||x+ 5| < ε or |x− 5| < ε
|x+5| . Since

we want δ < |x− 5|, this means δ < ε
|x+5| . The only problem is that this answer depends on x and we want a

guarantee that for any x if δ is small enough then |x2 − 25| < ε. Note that we want x close to 5. If we agree
that x should be at least within 1 unit of 5, then we have |x− 5| < 1 and since
|x| − 5 < |x− 5| −→ |x| − 5 < 1 −→ |x| < 6.
Since |x+ 5| ≤ |x|+ 5 it follows from above that |x+ 5| < 11 (for x within 1 unit of 5). Then we have
|x− 5| < ε

11 . So if we set δ = ε
11 , then for any ε > 0 (but not too big) we have a δ = ε

11 that will guarantee that
|x2 − 25| < ε. Note than in our numerical example, this would give us δ = 0.1

11 ≈ 0.000909 which is just within
the boundaries we set for δ.



Consider the limit below and try to repeat this example, first numerically and then symbolically.

Exercise: lim
x→3

2x = 6



Limit of a Sum
Theorem:
If lim

x→a
f(x) = L and lim

x→a
g(x) = M , then lim

x→a
(f(x) + g(x)) = L+M



Theorem:
If lim

x→a
f(x) = L and lim

x→a
g(x) = M , then lim

x→a
(f(x) + g(x)) = L+M

Proof :

Since lim
x→a

f(x) = L we know there is a δ1 such that |f(x)− L| < ε/2 when |x− a| < δ1. Similarly, since

lim
x→a

g(x) = M we know there is a δ2 such that |g(x)−M | < ε/2 when |x− a| < δ2. Let δ = minimum(δ1, δ2).

Then for |x− a| < δ we have

|(f(x) + g(x))− (L+M)| = |f(x)− L+ g(x)−M | (1)

≤ |f(x)− L|+ |g(x)−M | (2)

<
ε

2
+
ε

2
= ε (3)



Example:

Show lim
x→0

x

|x|
does not exist (there is no limit).
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Example:

Show lim
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1

x2
does not exist (infinite limit).
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0.2 Continuity

The definition of a continuous function is given below.

Definition: The function f is continuous at x = c if f is defined at x = c and if lim
x→c

f(x) = f(c).

The diagrams below show a variety of discontinuities. In each case, explain which condition of the definition
above the function pictured is violating.
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0.2.1 Intermediate Value Theorem

Suppose f is continuous on the closed interval [a, b]. If f(a) < k < f(b) then there is at least one number c in
[a, b] such that f(c) = k.



Proofs of the properties of continuity are relatively straight forward. For example, if f(x) and g(x) are
continuous, prove that f(x) · g(x) is continuous.

proof: Let h(x) = f(x) · g(x). We want to show that lim
x→c

h(x) = h(c).

From the properties of limits, we know that
lim
x→c

f(x)g(x) = lim
x→c

f(x) lim
x→c

g(x) so it follows that

lim
x→c

h(x) = lim
x→c

f(x) lim
x→c

g(x) = f(c)g(c) (since f and g are con-

tinuous) = h(c).

Exercise: Prove that if f(x) and g(x) are continuous, then f(x) + g(x) is continuous.


