
Math Guys - the Early Years
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The Shoulders of Giants
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Galileo Galilei 1564

Rene Descarte 1596

Johannes Kepler 1571

Isaac Newton 1642

(February 15)

(December 27)

(March 31)

Gottfried Leibniz 1646

Newton’s Principia
Published 1687
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1664 - 1666



The Calculus Party
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The Fundamental Theorem of Calculus

Let F 0(x) = f(x), so f is the derivative of F or F is an antiderivative of f .
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Consider
R b

a f(x) dx. We want to approximate the integral by taking
rectangular strips but rather than using the left or right hand sides of the
rectangles, we will be more arbitrary.
First note how the intervals of f fit the graph of F .
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Then, since we assume that F (x) is differentiable it follows that the MVT applies and on every
subinterval [xi−1, xi] of [a, b] there is a point ci such that

F 0(ci) =
F (xi)− F (xi−1)

∆x
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So we generate the list:

F 0(c1) =
F (x1)− F (a)

∆x

F 0(c2) =
F (x2)− F (x1)

∆x

F 0(c3) =
F (x3)− F (x2)

∆x
...

F 0(cn−1) =
F (xn−1)− F (xn−2)

∆x

F 0(cn) =
F (b)− F (xn−1)
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Now to approximate the integral,
R b

a f(x) dx we can use a Riemann sum of the form

Rn = f(c1)∆x + f(c2)∆x + · · · + f(cn−1)∆x + f(cn)∆x

But since F 0(x) = f(x) it follows that

Rn = F 0(c1)∆x + F 0(c2)∆x + · · · + F 0(cn−1)∆x + F 0(cn)∆x
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F 0(c1) =
F (x1)− F (a)

∆x

F 0(c2) =
F (x2)− F (x1)

∆x

F 0(c3) =
F (x3)− F (x2)

∆x

...

F 0(cn−1) =
F (xn−1)− F (xn−2)

∆x

F 0(cn) =
F (b)− F (xn−1)

∆x

We have

Z b

a
f(x) dx ≈ Rn = F 0(c1)∆x + F 0(c2)∆x + · · · + F 0(cn−1)∆x + F 0(cn)∆x

From the MVT list we can substitute F (xi)−F (xi−1)
∆x for each F 0(ci) and we have

Rn =
F (x1)− F (a)

∆x
· ∆x +

F (x2)− F (x1)

∆x
· ∆x + · · ·

· · · +
F (xn−1)− F (xn−2)

∆x
· ∆x +

F (b)− F (xn−1)

∆x
· ∆x



Cancelling ∆x gives

Rn = F (x1)− F (a) + F (x2)− F (x1) + F (x3)− F (x2) + · · ·

· · · + F (xn−1)− F (xn−2) + F (b)− F (xn−1)
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Rn = F (x1)− F (a) + F (x2)− F (x1) + F (x3)− F (x2) + · · · + F (xn−1)− F (xn−2) + F (b)− F (xn−1)

Now note that all of the middle terms drop out: F (x1) is matched by −F (x1), F (x2) is matched by
−F (x2) and so on. Once the middle terms have eliminated each other we are left with

Rn = F (b)− F (a)



It’s hard to appreciate what this gives you until you consider the implications of the right hand side.

Rn is the approximation for the integral,
R b

a f(x) dx and as we increase the number of intervals (as

n →∞), Rn approaches the actual value of
R b

a f(x) dx.
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But Rn = F (b)− F (a) and the right hand side of this equation is independent of n so we have

Z b

a
f(x) dx = lim

n→∞
Rn = F (b)− F (a)

or more succinctly,

Z b

a
f(x) dx = F (b)− F (a)



What does this mean?

For example, if f(x) = F 0(x) = x2, then since F (x) = 1
3x

3 is an
antiderivative of f , it follows that
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So the area bounded by f(x) = x2 between x = 0 and x = 3 (and
the x-axis) is 9 square units.


