Domain:

The domain of a function is the number set to which the independent variable belongs. Let's review some number sets:
Natural $(\mathbb{N})=\{1,2,3, \ldots\}$
Integer $(\mathbb{Z})=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Rational $(\mathbb{Q})=$ Set of numbers that can be expressed as $\frac{a}{b}$ where a and b are integers.
Real $(\mathbb{R})=$ Set of Rationals combined with irrationals (numbers with infinite, non-repeating decimals such as π or $\sqrt{2}$).
Complex $(\mathbb{C})=$ Set of numbers in form $a+b i$ where $a, b \in \mathbb{R}$ and $i=\sqrt{-1}$.
We typically neglect to specify a domain when defining a function, therefore assuming that the domain is \mathbb{R}. Note, however, if $B=f(n)=n / 33$ is the number of school busses needed as a function of the number of students in a school district (technically $S=f(n)=\lceil n / 33\rceil$.), the domain for B is \mathbb{N} and the range is also \mathbb{N}, written $f: \mathbb{N} \longrightarrow \mathbb{N}$.

1. Determine the best set(s) of numbers suited to the domain and range of these functions.
(a) The amount of money an electrician makes as a function of time in hours.
(b) The population of a town as a function of time in years.
(c) The number of houses sold by a realtor as a function of the selling price.
(d) The temperature as a function of the date in a year.
(e) The length of the diagonal of a square as a function of its side.
2. (a) Sketch graphs of (i) an increasing function and (ii) a decreasing function.
(b) Write definitions for increasing and decreasing functions in terms of the independent variable (x) and the dependent variable (y).

Linear Functions:

3. Give an example of a direct (linear) proportion; include units of the constant of proportionality.
4. Complete the table below:

x	-6	-3	0	3	6
$y=\frac{2}{3} x+5$					

6. Take a moment to note how the changes in the x and y variables in the two previous questions are manifested.
7. Sketch the graph of the table in (\#4).

8. Use the table below to answer the following questions:

x	0	1	2	3	4
$f(x)$	9	8	5	0	-7

(a) find $f(4)$: \qquad
(b) Solve $f(x)=0: x=$ \qquad
(c) Find the average rate of change from $x=0$ to $x=2$ and then from $x=2$ to $x=4$. What do you observe from your results?
7. The population of Half Moon Bay since 1995 can be modeled by the function $P(t)=10000(1.012)^{t}$ where t is in years. Find the average rate of growth in population from 1995 to 1997 and from 1999 to 2001. What do you observe from your results?

