Show

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} x} \ln x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \ln x=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h} \tag{1}\\
=\lim _{h \rightarrow 0} \frac{\ln \left(\frac{x+h}{x}\right)}{h} \tag{2}\\
=\lim _{h \rightarrow 0} \frac{1}{h} \ln \left(\frac{x+h}{x}\right) \tag{3}\\
= \tag{4}\\
\lim _{h \rightarrow 0} \ln \left(\frac{x+h}{x}\right)^{1 / h} \tag{5}\\
= \\
\lim _{h \rightarrow 0} \ln \left(1+\frac{h}{x}\right)^{1 / h}
\end{gather*}
$$

Now consider the form $\frac{h}{x}$. We recognize this limit is reminiscent of the limit defining e^{x} but the term isn't quite right. We proceed in two stages. First by getting the exponent to look more like the form $\frac{h}{x}$:

$$
\begin{align*}
\lim _{h \rightarrow 0} \ln \left(1+\frac{h}{x}\right)^{1 / h} & =\frac{x}{x} \lim _{h \rightarrow 0} \ln \left(1+\frac{h}{x}\right)^{1 / h} \tag{6}\\
& =\frac{1}{x} \lim _{h \rightarrow 0} x \ln \left(1+\frac{h}{x}\right)^{1 / h} \quad \text { (since } x \text { not a function of } h \text {) } \tag{7}\\
& =\frac{1}{x} \lim _{h \rightarrow 0} \ln \left(1+\frac{h}{x}\right)^{x / h} \tag{8}
\end{align*}
$$

The second stage is to consider the term $\frac{x}{h}$.
As $h \rightarrow 0$ we have $\frac{x}{h} \rightarrow \infty$ so if $H=\frac{x}{h}$ then as $h \rightarrow 0, H \rightarrow \infty$ so we have

$$
\begin{align*}
\frac{1}{x} \lim _{h \rightarrow 0} \ln \left(1+\frac{h}{x}\right)^{x / h} & =\frac{1}{x} \lim _{H \rightarrow \infty} \ln \left(1+\frac{1}{H}\right)^{H} \tag{9}\\
& =\frac{1}{x} \ln \lim _{H \rightarrow \infty}\left(1+\frac{1}{H}\right)^{H} \tag{10}\\
& =\frac{1}{x} \ln e \tag{11}\\
& =\frac{1}{x} \tag{12}
\end{align*}
$$

