1. $y^{\prime}=\frac{y}{3 y^{2}-x}$. Note that the only candidate for a horizontal tangent is at $y=0$ but this leads to $0=-6$ in the original curve so there is no horizontal tangent. Substituting $x=3 y^{2}$ into the original curve gives $y=\sqrt[3]{3}$ and this leads to the solution $x=3^{5 / 3}$.
2. $y^{\prime}=\frac{2 x y}{3 y^{2}-x^{2}}$. The horizontal tangent occurs where the numerator of y^{\prime} is 0 so $2 x y=0$. Then either $x=0, y=0$ or both. In the case where $y=0$ (or both) we get $0=-6$ in the original equation so this is not a solution. If $x=0$ we have $y^{3}=-6$ so $y=(-6)^{1 / 3}=-6^{1 / 3}$ is the equation of the horizontal tangent.
Vertical tangents occur where $3 y^{2}-x^{2}=0$ which gives us $3 y^{2}=x^{2}$ and substituting into the original equation we have $y^{3}-3 y^{3}=-6 \longrightarrow y=3^{1 / 3}$. Then $x^{2}=3\left(3^{1 / 3}\right)^{2}$ so $x= \pm 3^{5 / 6}$ gives the two vertical tangents.
3. Equation is $y=1$

4 . $y^{\prime}=\frac{4 x-2 x y}{y^{2}+x^{2}+1}$. The two solutions to $4 x-2 x y=0$ give one superfluous result ($y=2$ fails to be a point on the curve), and one good one: $x=0 \longrightarrow y=0.165$.
5. Hint: What is this asking? Try sketching the tangent lines.

The answer is $\left(1, e^{-2}\right)$.
6. About $\$ 1.03$ per hour at 10:00 am.
$7 . \pi \sqrt{2}$
8. (a) $f^{\prime}(x)=3 x^{2}$
(b) $y^{\prime}=-x^{-2}$
(c) $y^{\prime}=0$
(d) $y^{\prime}=-\frac{\ln x+1}{(x \ln x)^{2}}$
(e) $g^{\prime}(x)=\frac{x}{x^{2}+1}$
(f) $h^{\prime}(x)=x^{1-2 x}\left(\frac{-2 x \ln x+1-2 x}{x}\right)=x^{-2 x}(-2 x \ln x+1-2 x)$
9. (a) $f^{\prime}(x)=\ln x$
(b) $y^{\prime}=3 x^{2}$
(c) $g^{\prime}(x)=-3 \ln 2 \cdot x^{2} \cdot 2^{5-x^{3}}$
(d) $y^{\prime}=\frac{\sqrt{x}(\ln \sqrt{x}-1)}{2 x[\ln \sqrt{x}]^{2}}=\frac{\ln x-2}{\sqrt{x}(\ln x)^{2}}$
(e) $e^{-x^{2}}\left(2+x^{-2}\right)$
(f) $g(x)=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}$

10 . $y=\frac{2}{3} x+\left(\ln \sqrt{3}-\frac{2}{3}\right)$
11.
(a) $P=50000 e^{-0.018296 t}$
(b) $\frac{\mathrm{d} P}{\mathrm{~d} t}=-695.2$ so population decreasing by 695 people per year in 1995 .
12. Tangent line at $x=3$ would give an approximation of $f(5)=10$. Since f is concave down, we know the tangent line is an overestimate so (c) is impossible. Since f is increasing and $f(3)=2$, (a) is impossible. Therefore (b) is the only reasonable solution.
13. $\left(-\infty,-\sqrt{\frac{1}{2}}\right]$ and $\left[\sqrt{\frac{1}{2}}, \infty\right)$
$14 .\left[-\sqrt{\frac{3}{2}}, 0\right]$ and $\left[\sqrt{\frac{3}{2}}, \infty\right)$
15. As with other inverse functions we begin by writing $\cos (\arccos x)=x$ and differentiating both sides gives $\frac{\mathrm{d}}{\mathrm{d} x} \tan (\arctan x)=\frac{\mathrm{d}}{\mathrm{d} x} x \longrightarrow$
$\sec ^{2}(\arctan x) \cdot \frac{\mathrm{d}}{\mathrm{d} x} \arctan x=1$
$\frac{\mathrm{d}}{\mathrm{d} x} \arctan x=\frac{1}{\sec ^{2}(\arctan x)}=\cos ^{2}(\arctan x)$
and from the diagram this yields

$\frac{\mathrm{d}}{\mathrm{d} x} \arctan x=\frac{1}{1+x^{2}}$.

