Show all relevant work!
You may use a calculator to verify solutions, but not to provide them.

1. Find the derivatives below. Make a good faith effort to simplify your answers.
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{4 x^{2}-1}{\sqrt{x}}\right)$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x-1}{x+1}\right)$
2. Use calculus to determine where $g(x)=x e^{-x}$
(a) Has any horizontal tangents.
(b) Is concave down and decreasing.
3. Consider the function $g(x)=\frac{x}{x^{2}+1}$ defined for all $x \in \mathbb{R}$.
(a) Determine where $g(x)$ has any horizontal tangents.
(b) Explain why $g(x)$ must be increasing on $[-1,1]$
4. Let $k(x)=(f(x)) /(g(x))$. Find:
(a) $k^{\prime}(1)$ \qquad
(b) $k^{\prime}(2)$ \qquad
(c) $k^{\prime}(3)$ \qquad

5. Suppose f and g are differentiable functions with the values shown in the following table. For each of the following functions, h, find $h^{\prime}(2)$.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	3	4	5	-2

(a) $h(x)=f(x)+g(x)$
(b) $h(x)=f(x) g(x)$
(c) $h(x)=\frac{f(x)}{g(x)}$
6. Let $f(v)$ be the gas consumption (in liters $/ \mathrm{km}$) of a car going at velocity v (in $\mathrm{km} / \mathrm{hr}$). In other words, $f(v)$ tells you how many liters of gas the car uses to go one kilometer, if it is going at velocity v. You are told that $f(80)=0.05$ and $f^{\prime}(80)=0.0005$.
(a) Let $g(v)$ be the distance the same car goes on one liter of gas at velocity v.

What is the relationship between $f(v)$ and $g(v)$? Find $g(80)$ and $g^{\prime}(80)$.
(b) Let $h(v)$ be the gas consumption in liters per hour. In other words, $h(v)$ tells you how many liters of gas the car uses in one hour if it is going at velocity v. What is the relationship between $h(v)$ and $f(v)$? Find $h(80)$ and $h^{\prime}(80)$.
(c) How would you explain the practical meaning of the values of these functions and their derivatives to a driver who knows no calculus?

