Derivative approximations.

1. From the definition of the derivative at a point,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Approximate $f^{\prime}(2)$ for $f(x)=e^{x}$.

2. From the interpretation of the derivative at a point as the slope of the line tangent to $f(x)$ at that point:

- Approximate $f^{\prime}(1)$ for $f(x)$ shown below by sketching the line tangent to $f(x)$ at $x=1$ and estimating its slope.

If the vertical axis measures fuel in ounces and the horizontal axis measures distance in miles, interpret the meaning of you result for $f^{\prime}(1)$.
3. From the interpretation of the derivative at a point as the slope of the line tangent to $f(x)$ at that point (or the slope of the curve itself at that point):

- Approximate $f^{\prime}(2)$ from the table for $f(x)$ below

x	0	1	2	3	4
$f(x)$	4	3	1	5	8

