Math 251

Derivative approximations.

1. From the definition of the derivative at a point,

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}:$$

• Approximate f'(2) for $f(x) = e^x$.

2. From the interpretation of the derivative at a point as the slope of the line tangent to f(x) at that point:

• Approximate f'(1) for f(x) shown below by sketching the line tangent to f(x) at x = 1 and estimating its slope.

If the vertical axis measures fuel in ounces and the horizontal axis measures distance in miles, interpret the meaning of you result for f'(1).

- 3. From the interpretation of the derivative at a point as the slope of the line tangent to f(x) at that point (or the slope of the curve itself at that point):
 - Approximate f'(2) from the table for f(x) below

x	0	1	2	3	4
f(x)	4	3	1	5	8