Show all relevant work!

You may use a calculator to verify solutions, but not to provide them.

1. Solve:
(a)

$$
\begin{array}{rll}
x^{2} & = & 5 x+14 \\
x^{2}-5 x-14 & = & 0 \\
(x-7)(x+2) & = & 0 \\
x-7=0 & \text { and } & x+2=0 \\
x=7 & \text { and } & x=-2
\end{array}
$$

(b)

$$
\begin{array}{rll}
16 x^{2}-25 & = & 0 \\
(4 x-5)(4 x+5) & = & 0 \\
4 x-5=0 & \text { and } & 4 x+5=0 \\
x=\frac{5}{4} & \text { and } & x=-\frac{5}{4}
\end{array}
$$

(c)

$$
\begin{aligned}
\frac{x^{2}}{5}-\frac{x}{2} & =\quad-\frac{1}{5} \\
10\left(\frac{x^{2}}{5}-\frac{x}{2}\right) & =10\left(-\frac{1}{5}\right) \\
2 x^{2}-5 x & =-2 \\
2 x^{2}-5 x+2 & =0 \\
(2 x-1)(x-2) & =0 \\
x=\frac{1}{2} & \text { and } \quad x=2
\end{aligned}
$$

2. Write a quadratic equation for which $x=-4$ and $x=\frac{3}{2}$ are solutions.

Solution: The factored form might look like $(x+4)\left(x-\frac{3}{2}\right)=0$. However, to write this without fractions we can take a hint from problems like $1(\mathrm{~b})$ above and write it as $(x+4)(2 x-3)=0$.
3. Write an equation of a parabola for which $x=-4$ and $x=\frac{3}{2}$ are the x-intercepts.

Solution: This is similar to (2) but the equation of a parabola is a function so the x-intercepts are just the special case where $y=0$. Therefore our answer is $y=(x+4)(2 x-3)$ or, if we distribute it, $y=2 x^{2}+5 x-12$.
4. Write an equation of a different parabola for which $x=-4$ and $x=\frac{3}{2}$ are the x-intercepts.

Solution: Anything of the form $y=k(x+4)(2 x-3)$ will work here, since the x-intercepts remain the same. The distinction is that sa you change k, the steepness of the parabola changes - or it flips, if you use $k<0$.

5 . Find the point symmetric with the y-intercept of the parabola $y=x^{2}-7 x+5$.
Solution: The y-intercept is $(0,5)$ so the symmetric point will be at the other solution to $x^{2}-7 x+5=5$. Solving gives us:

$$
\begin{array}{rll}
x^{2}-7 x+5 & = & 5 \\
x^{2}-7 x & = & 0 \\
x(x-7) & = & 0 \\
x=0 & \text { and } & x=7
\end{array}
$$

6. The graph of $y=-x^{2}+x+6$ is shown to right.

Find the values of the intercepts k, m, and n and the coordinates of the vertex (the high point), without a calculator.

Solution: k is the y-intercept so we know $x=0$ and it follows that $k=-(0)^{2}+0+6=6$

The x-intercepts, m and n occur where $y=0$ so

$$
\begin{aligned}
-x^{2}+x+6 & =0 \\
-1\left(-x^{2}+x+6\right) & =-1(0) \\
x^{2}-x-6 & =0 \\
(x+2)(x-3) & =0 \\
x=-2 & \text { and } \quad x=3
\end{aligned}
$$

So $m=-2$ and $n=3$.
The vertex occurs between any two symetric points so if we average the x-intercepts we get the x-coordinate of the vertex: $x=\frac{-2+3}{2}=\frac{1}{2}$.
The y-coordinate comes from plugging x into the original equation: $y=-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}+6=6 \frac{1}{4}$. Therefore the vertex is at $\left(\frac{1}{2}, 6 \frac{1}{4}\right)$.
7. The graph of a parabola of the form $y=a x^{2}+b x+c$ is shown to right. Find the equation of this parabola using the given intercepts.

Solution: From the graph we know the parabola has x-intercepts at $x=2$ and $x=3$ so it has factors $(x-2)(x-3)$. From $\# 4$ above, we have seen the general form of this parabola will be $y=k(x-2)(x-3)$. Since the y-intercept is at $(0,12)$, we know that when $x=0$ in our equation we should have $y=12$ so

$$
\begin{aligned}
12 & =k(0-2)(0-3) \\
12 & =6 k \\
2 & =k
\end{aligned}
$$

Then we have $y=2(x-2)(x-3)$ or $y=2 x^{2}-10 x+12$.

