Example 3

How much 20% alcohol solution and 50% alcohol solution must be mixed in order to make 12 gallons of 30% alcohol solution?

Solution: Like the previous problem this involves percentages of different quantities and we can relate the quantity of alcohol with its percent concentration. e.g., 8 gallons of 20% alcohol contains 8 \cdot 0.2 = 1.6 gallons of alcohol.

Include columns for d , r , and t								
Quantity of mix Concentration Quantity of alc.								
20% solution								
50% solution								
Total								

Then fill in what you *want*:

		•		
		Quantity of mix	Concentration	Quantity of alc.
	20% solution	x	0.2	
	50% solution	у	0.5	
	Total	12	0.3	3.6
1.1				-

Let x = quantity of 20% solution.

Begin by filling in what you know:					
	Quantity of mix	Concentration	Quantity of		
200/ colution		0.2			

	Quantity of mix	Concentration	Quantity of alc.
20% solution		0.2	
50% solution		0.5	
Total	12	0.3	3.6

Complete the Alcohol column:

x + y

Quantity of mix	Concentration	Quantity of alc.
x	0.2	0.2 <i>x</i>
У	0.5	0.5 y
12	0.3	3.6
	Quantity of mix x y 12	y 0.5

Let y = quantity of 50% solution.

=	12	0
	14	0

0.2x + 0.5y = 3.6

Then we have an equation for the total quantity of solution and total quantity of alcohol:

$$x \quad + \quad y = 12$$

This gives us the system of equations: 0.2x + 0.5y = 3.6

Solving the first for y: y = 12 - x and substituting into the second equation gives $\rightarrow 0.2x + 0.5(12 - x) = 3.6$ Then $0.2x + 6 - 0.5x = 3.6 \rightarrow -0.3x = -2.4 \rightarrow x = 8$ gallons of 20% solution. Then y = 12 - 8 = 4 gall. of 50%.

Math 112

Verbal design opportunities Chp. 5

Example 1							
	A boat travels 30 miles up a river (against the current) in 5 hours. The boat returns to its starting place on the river (with the current) in 3 hours. What is the speed of the boat in still water? What is the speed of the current?						
Solution: Since this involves d involved (d, r, t up r						e two diffe	rent relations
Include columns for d , r , and r	<i>t</i> :		Begin by filli	ng in wha	at you <i>kn</i>	OW:	
r t	d = rt		TT .	r	t	d = rt	
Upstream Downstream		\rightarrow	Upstream Downstream		5		
Then fill in what you <i>want</i> :			Complete the		0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d = rt		Upstream	r x - y	<u>t</u> 5	$\frac{d = rt}{5(x - y)}$	
Upstream $x - y$ 5Downstream $x + y$ 3		\rightarrow	Downstream	x + y	3	$\frac{3(x-y)}{3(x+y)}$	
Let $x =$ speed in still w let $y =$ speed of the cu							
We know the distance is the same for l	ooth (30 miles) so	we con	nplete the last	column w	vith:	5(x - y) =	= 30
						3(x+y) =	= 30
This gives us the system:	5x - 5y = 30 -	<u>→</u> 1	5x - 15y = 90	1		0	
	3x + 3y = 30 -	<u>×</u> 5→1	5x + 15y = 150	0		= 8 mph $(8) + 3y =$	30
$30x = 240 \qquad \text{so } 3y = 6 \rightarrow y = 2 \text{ mph.}$							
It follows that the boat goes 8mph in still water and the current is 2 mph.							
Example 2	ile week week to m	<u></u>			h ant talin	og o viels A	friend

You want to invest \$5000 but while you want to make money, you are concerned about taking a risk. A friend suggests you split the investment - part at a higher risk 9% rate and the rest at a conservative 5%. If your goal is to make \$350, how much should you invest at each rate?

Solution: Since this problem involves Principal, Rate, and interest we will use $I = P \cdot r$. Since it involves two different rates (and two different amounts) we will keep track with a table:

Include columns for I , P , and r :							
		Р	r	$I = P \cdot r$			
	Invest @ 9%						
	Invest @ 5%						
	Total		-				

Then fill in what you *want* :

	Р	r	$I = P \cdot r$			
Invest @ 9%	x	0.09				
Invest @ 5%	У	0.05				
Total	5000	-				
Let $x =$ principal invested at 9% and						

y = principal invested at 5%.

Begin	bv	filling	in	what	vou	know:	
Degm	IJу	mining	111	winut	you	miow.	

	P	r	$I = P \cdot r$
Invest @ 9%		0.09	
Invest @ 5%		0.05	
Total		-	

Complete the	e I colum	n using I	$= P \cdot r$
	D	r	$I = D_{1}r$

x + y = 5000

	P	r	$I = P \cdot r$
Invest @ 9%	x	0.09	.09 x
Invest @ 5%	у	0.05	.05 y
Total	\$5000	-	\$350

.09x + .05y = 350

We have two totals and two sets of expressions to equate to them:

Setting up the system gives: x + y = 5000.09x + .05y = 350 and we can solve by either elimination or substitution.

The top equation is perfect for substitution so we solve for y: y = 5000 - x and substitute into the other equation: $.09x + .05(5000 - x) = 350 \rightarrow .09x - .05x + 250 = 350 \rightarrow .04x = 100 \rightarrow x = 2500 $y = 5000 - x \rightarrow y = 2500

So you invest \$2500 at 5% and \$2500 at 9% in order to make \$350 in interest.