Example 3
How much $20 \%$ alcohol solution and $50 \%$ alcohol solution must be mixed in order to make 12 gallons of $30 \%$ alcohol solution?
Solution: Like the previous problem this involves percentages of different quantities and we can relate the quantity of alcohol with its percent concentration. e.g., 8 gallons of $20 \%$ alcohol contains $8 \cdot 0.2=1.6$ gallons of alcohol.

Include columns for $d, r$, and $t$

|  | Quantity of mix | Concentration | Quantity of alc. |
| :---: | :---: | :--- | :--- |
| $20 \%$ solution |  |  |  |
| $50 \%$ solution |  |  |  |
| Total |  |  |  |

Then fill in what you want:

|  | Quantity of mix | Concentration | Quantity of alc. |
| :---: | :---: | :---: | :---: |
| $20 \%$ solution | $x$ | 0.2 |  |
| $50 \%$ solution | $y$ | 0.5 |  |
| Total | 12 | 0.3 | 3.6 |

Let $x=$ quantity of $20 \%$ solution.
Let $y=$ quantity of $50 \%$ solution.

Then we have an equation for the total quantity of solution and total quantity of alcohol:

$$
\begin{aligned}
x+y & =12 \\
0.2 x+0.5 y & =3.6
\end{aligned}
$$

Solving the first for $y: y=12-x$ and substituting into the second equation gives $\rightarrow 0.2 x+0.5(12-x)=3.6$
Then $0.2 x+6-0.5 x=3.6 \rightarrow-0.3 x=-2.4 \rightarrow x=8$ gallons of $20 \%$ solution. Then $y=12-8=4$ gall. of $50 \%$.

Verbal design opportunities Chp. 5

## Example 1

A boat travels 30 miles up a river (against the current) in 5 hours. The boat returns to its starting place on the river (with the current) in 3 hours. What is the speed of the boat in still water? What is the speed of the current?
Solution: Since this involves distance, rates, and time we plan to use $d=r \cdot t$. There are two different relations involved ( $d, r$, $t$ up river, and $d, r, t$ down river) so let's begin with a table:
Include columns for $d, r$, and $t$ :
Begin by filling in what you know:

|  | $r$ | $t$ | $d=r t$ |
| :---: | :---: | :---: | :---: |
| Upstream |  |  |  |
| Downstream |  |  |  |

Then fill in what you want :

|  | $r$ | $t$ | $d=r t$ |
| :---: | :---: | :---: | :---: |
| Upstream | $x-y$ | 5 |  |
| Downstream | $x+y$ | 3 |  |

$\rightarrow$
Complete the $d$ column using $d=r \cdot t$ :

Let $x=$ speed in still water and
let $y=$ speed of the current
We know the distance is the same for both ( 30 miles) so we complete the last column with:

$$
\begin{aligned}
& 5(x-y)=30 \\
& 3(x+y)=30
\end{aligned}
$$

This gives us the system:

$$
\begin{aligned}
& 5 x-5 y=30 \xrightarrow{x 3} 15 x-15 y=90 \\
& 3 x+3 y=30 \xrightarrow{\times 5} \frac{15 x+15 y}{}=150 \\
& 30 x=240
\end{aligned}
$$

$$
\text { So } x=8 \mathrm{mph}
$$

$$
\text { and } 3(8)+3 y=30
$$

$$
\text { so } 3 y=6 \rightarrow y=2 \mathrm{mph}
$$

It follows that the boat goes 8 mph in still water and the current is 2 mph .

## Example 2

You want to invest $\$ 5000$ but while you want to make money, you are concerned about taking a risk. A friend suggests you split the investment - part at a higher risk $9 \%$ rate and the rest at a conservative $5 \%$. If your goal is to make $\$ 350$, how much should you invest at each rate?

Solution: Since this problem involves Principal, Rate, and interest we will use $I=P \cdot r$. Since it involves two different rates (and two different amounts) we will keep track with a table:

Include columns for $I, P$, and $r$ :

|  | $P$ | $r$ | $I=P \cdot r$ |
| :---: | :---: | :---: | :---: |
| Invest @ 9\% |  |  |  |
| Invest @ 5\% |  |  |  |
| Total |  | - |  |

Then fill in what you want:

|  | $P$ | $r$ | $I=P \cdot r$ |
| :---: | :---: | :---: | :---: |
| Invest @ 9\% | $x$ | 0.09 |  |
| Invest @ 5\% | $y$ | 0.05 |  |
| Total | 5000 | - |  |

Let $x=$ principal invested at $9 \%$ and $y=$ principal invested at $5 \%$.

Begin by filling in what you know:

|  | $P$ | $r$ | $I=P \cdot r$ |
| :---: | :---: | :---: | :---: |
| Invest @ 9\% |  | 0.09 |  |
| Invest @ 5\% |  | 0.05 |  |
| Total |  | - |  |

Complete the $I$ column using $I=P \cdot r$

|  | $P$ | $r$ | $I=P \cdot r$ |
| :---: | :---: | :---: | :---: |
| Invest @ 9\% | $x$ | 0.09 | $.09 x$ |
| Invest @ 5\% | $y$ | 0.05 | $.05 y$ |
| Total | $\$ 5000$ | - | $\$ 350$ |

We have two totals and two sets of expressions to equate to them:


$$
x+y=5000
$$

Setting up the system gives:

$$
\begin{aligned}
& x+y=5000 \\
& .09 x+.05 y=350
\end{aligned} \text { and we can solve by either elimination or substitution. }
$$

The top equation is perfect for substitution so we solve for $y$ : $y=5000-x$ and substitute into the other equation:

$$
.09 x+.05(5000-x)=350 \quad \rightarrow \quad .09 x-.05 x+250=350 \quad \rightarrow \quad .04 x=100 \quad \rightarrow \quad x=\$ 2500
$$

$$
y=5000-x \quad \rightarrow \quad y=\$ 2500
$$

So you invest $\$ 2500$ at $5 \%$ and $\$ 2500$ at $9 \%$ in order to make $\$ 350$ in interest.

