Systems of Linear Equations: Solving by Determinants

A proof (where Cramer's Rule comes from.)

Outline: We'll solve a specific system of equations (with numbers) on the left and a general system (with letters) on the right, both by Linear Combination.

When we're done we should see a pattern in the general version (right side) which suggests a solution using determinants.

Example

Solve the system below:

$$
\begin{aligned}
& 8 x+5 y=23 \\
& 3 x+-2 y=37
\end{aligned}
$$

First we solve for x (by eliminating y):

$$
\text { (2) } 8 x+5 y=23
$$

$$
\text { (5) } 3 x+-2 y=37
$$

$$
16 x+10 y=46
$$

$$
+15 x+-10 y=185
$$

$$
31 \mathrm{x}=231
$$

dividing by 31 :

$$
x=\frac{231}{31}
$$

Now we go back to the beginning and solve for y (instead of substituting this ugly fraction)

$$
\begin{aligned}
\text { (3) } 8 x+5 y & =23 \\
(-8) 3 x+-2 y & =37 \\
\hline 24 x+15 y & =69 \\
+-24 x+16 y & =-296 \\
\hline 31 y & =-227
\end{aligned}
$$

Dividing by 31 :

$$
y=\frac{-227}{31}
$$

The lines intersect at the point : $\left(\frac{231}{31}, \frac{-227}{31}\right)$

Solve the system below:

$$
\begin{aligned}
& \mathrm{ax}+\mathrm{by}=\mathrm{c} \\
& \mathrm{dx}+\mathrm{ey}=\mathrm{f}
\end{aligned}
$$

(where a, b, c, d, e, and f are just numbers)
First we solve for x (by eliminating y):

$$
\begin{aligned}
\text { (e) ax }+ \text { by } & =\mathrm{c} \\
(-\mathrm{b}) \mathrm{dx}+\mathrm{ey} & =\mathrm{f} \\
\text { aex }+ \text { bey } & =\mathrm{ce} \\
+-\mathrm{bdx}+-\mathrm{bey} & =-\mathrm{bf} \\
\hline \text { aex }-\mathrm{bdx} & =\mathrm{ce}-\mathrm{bf}
\end{aligned}
$$

Factoring out x :

$$
\mathrm{x}(\mathrm{ae}-\mathrm{bd}) \quad=\mathrm{ce}-\mathrm{bf}
$$

dividing by ($\mathrm{ae}-\mathrm{bd}$):

$$
\mathrm{x}=\frac{\mathrm{ce}-\mathrm{bf}}{\mathrm{ae}-\mathrm{bd}}
$$

Now we go back to the beginning and solve for y (instead of substituting this ugly fraction)

$$
\begin{aligned}
\text { (d) ax }+ \text { by } & =c \\
(-a) \mathrm{dx}+\mathrm{ey} & =\mathrm{f} \\
\hline \text { adx }+ \text { bdy } & =\mathrm{cd} \\
+- \text { adx }+- \text { aey } & =-\mathrm{af} \\
\hline \text { bdy }- \text { aey } & =\mathrm{cd}-a f
\end{aligned}
$$

Factoring out y:

$$
\mathrm{y}(\mathrm{bd}-\mathrm{ae}) \quad=\mathrm{cd}-\mathrm{af}
$$

Dividing by (bd - ae):

$$
\mathrm{y}=\frac{\mathrm{cd}-\mathrm{af}}{\mathrm{bd}-\mathrm{ae}}
$$

Notice the denominator is the reverse of the one for x (above) and it would look nice if they were the same, so we multiply top and bottom by -1 :

$$
\begin{aligned}
& y=\frac{-1}{-1} \cdot \frac{c d-a f}{b d-a e}=\frac{a f-c d}{a e-b d} \\
& y=\frac{a f-c d}{a e-b d}
\end{aligned}
$$

The lines intersect at the point : $\left(\frac{c e-b f}{a e-b d}, \frac{a f-c d}{a e-b d}\right)$

With the system

$$
\begin{aligned}
& \mathrm{ax}+\mathrm{by}=\mathrm{c} \\
& \mathrm{dx}+\mathrm{ey}=\mathrm{f}
\end{aligned}
$$

You notice that the coordinates for the point of intersection are given by :

$$
x=\frac{c e-b f}{a e-b d} \quad \text { and } \quad y=\frac{a f-c d}{a e-b d}
$$

Is there an easy way to find these values ? Yes! Using Determinants:
First, the denominator is the same for both fractions so

$$
\begin{array}{lll}
D=a e-b d=\left|\begin{array}{ll}
a & b \\
d & e
\end{array}\right| & \begin{array}{ll}
\text { Notice it's made up of the coefficients } & a x+b y=c \\
& \text { on the left side of the system : }
\end{array} & \boxed{d} x+e y=f
\end{array}
$$

The Numerator of the y coordinate $\left(\mathrm{N}_{\mathrm{x}}\right)$ is given by:

The Numerator of the y coordinate $\left(\mathrm{N}_{\mathrm{y}}\right)$ is given by:

So the point of intersection is given by the coordinates: $\left(\frac{\left|\begin{array}{ll}\mathrm{c} & \mathrm{b} \\ \mathrm{f} & \mathrm{e}\end{array}\right|}{\left|\begin{array}{ll}a & b \\ d & e\end{array}\right|} \frac{\left|\begin{array}{ll}a & c \\ d & f\end{array}\right|}{\left|\begin{array}{ll}a & b \\ d & e\end{array}\right|}\right)$
Example:
Solve the system below using Determinants.

$$
\begin{aligned}
& 6 x-7 y=47 \\
& 2 x+5 y=-21
\end{aligned}
$$

$\mathrm{D}=\left|\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{d} & \mathrm{e}\end{array}\right|=\left|\begin{array}{cc}6 & -7 \\ 2 & 5\end{array}\right|=30--14=44$

$$
\begin{array}{|l|}
\hline 2 x+5 y \\
6 x-7 y
\end{array}=-21
$$

$$
\mathrm{N}_{\mathrm{x}}=\left|\begin{array}{ll}
\mathrm{c} & \mathrm{~b} \\
\mathrm{f} & \mathrm{e}
\end{array}\right|=\left|\begin{array}{cc}
47 & -7 \\
-21 & 5
\end{array}\right|=235-147=88
$$

$$
\begin{aligned}
-21 x+5 y & =-21 \\
47 x-7 y & =47
\end{aligned}
$$

replace x coefficients
$N_{y}=\left|\begin{array}{ll}a & c \\ d & f\end{array}\right|=\left|\begin{array}{cc}6 & 47 \\ 2 & -21\end{array}\right|=-126-94=-220$

$$
\begin{aligned}
2 x+-21 y & =-21 \\
6 x-47 y & =47
\end{aligned}
$$

$x=\frac{N_{x}}{D}=\frac{\left|\begin{array}{ll}c & b \\ f & e\end{array}\right|}{\left|\begin{array}{ll}a & b \\ d & e\end{array}\right|}=\frac{88}{44}=2 \quad y=\frac{N_{y}}{D}=\frac{\left|\begin{array}{ll}a & c \\ d & f\end{array}\right|}{\left|\begin{array}{ll}a & b \\ d & e\end{array}\right|}=\frac{-220}{44}=-5$
So the point of intersection is at $(2,-5)$ or $S=\{(2,-5)\}$

$$
\begin{aligned}
& N_{y}=a f-c d=\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right| \\
& \text { Notice the y coefficients are replaced } \\
& \text { a } x+c y=c \\
& \text { by the numbers on the right : } \\
& \text { d } x+f y=f
\end{aligned}
$$

$$
\begin{aligned}
& N_{x}=\mathrm{ce}-\mathrm{bf}=\left|\begin{array}{cc}
\mathrm{c} & \mathrm{~b} \\
\mathrm{f} & \mathrm{e}
\end{array}\right| \quad \text { Notice the } \mathrm{x} \text { coefficients are replaced } \quad \begin{array}{c}
\mathrm{c} \\
\mathrm{x}
\end{array} \mathrm{x}+\mathrm{b} \mathrm{y}=\mathrm{c} \\
& \text { by the numbers on the right: } \quad[f x+e y=f
\end{aligned}
$$

