

Tay Sachs disease is due to a recessive gene (h) that causes death within the first few years of life. The dominant allele at this locus produces a normal phenotypes. Abnormally shortened fingers (brachyphalangy) is thought to be due a heterozygous genotype for a lethal gene (b). What are the **phenotypic expectations** among teenage children from parents who are both brachyphalangic and heterozygous for Tay Sachs disease?

	HB	Hb	hB	hb
HB	HHBB	HHBb	HhBB	HhBb
Hb	HHBb	HHbb	HhBb	Hhbb
hB	HhBB	HhBb	hhBB	hhBb
hb	HhBb	Hhbb	hhBb	hhbb

	HB	Hb	hB	hb
HB	Normal	Brachy	Ndiffal	Brachy
Hb	Brachy		Bhachy	
₩B	Normal	Brachy		
hb	Brachy	×		X

The recessive genotypes at another locus (j) results in death before age 18 due to "juvenile amaurotic idiocy" (JAI). Only individuals who are heterozygous for both Tay Says and JAI will survive to adulthood.

adulthood. a) What proportion of the children from HhJj parents could probably survive to adulthood? b)

	HJ	Hj	bJ	bj
HJ	HHJJ	HHj	HbJJ	Hblj
Hj	HHJj	HHj	Hblj	Hhij
bĴ	HhJJ	Hblj	Ш	hhj
bj	Hblj	Hhj	hblj	hhji

	HJ	Hj	bJ	hj
HJ	Normal	Normal	Normal	Normal
Hj	Normal	\rightarrow	Nomal	X
bJ	Normal	Normal		>
hj	Normal	\ge		\geq

The recessive genotypes at another locus (j) results in death before agar 18 due to "juvenile amaurotic idiocy" (JAI). Only individuals who are heterozygous for both Tay Says and JAI will survive to adulthood. a) What proportion of the children from HhJ parents could probably survive to adulthood? b) What proportion of the adult survivors in part (a) would not be carriers of either hereditary abnormality?

	HJ	Hj	hJ	hj
HJ	Normal	Normal	Normal	Nonnal
Hj	Normal	\gg	Nonnal	
hJ	Normal	Normal	>*	$> \!\!\!\! \times$
hj	Normal	\searrow	$> \!$	\geq

Inheritance of Do	Coat Color in
	Black x Black = Black
	Black x Black = 3 black:1 chocolate

Coat Color

Heterozygous black x Chocolate =

Coat Color

EE = no yellow Ee = carries yellow ee = yellow

Epistasis

EE = no yellow Ee = carries yellow ee = yellow

What do you get if:

Yellow dog, heterozygous for black x Chocolate dog, heterozygous for yellow

Coat color in cats is X-linked. X^{B} =black X^{b} =orange The heterozygous condition is calico.

How much will a male calico cat sell for?

nswer:

Usually less than one thousand dollars. Most sell for \$200 to \$600 Dollars it must be beedable to be worth anything. Neuters are worthless. Also it must be a TRUE callco that is patches of orange Jback, and white. Perhaps you should keep and breed yours we need a strain to breed from .